ADDENDUM TO THE 2002 FINAL EIR

for the proposed

Los Angeles Pierce College 2010 Master Plan Update of the 2002 Master Plan

Prepared for

Los Angeles Community College District

Prepared by

ICF International

JUNE 2010

Table of Contents

ADDEND	DUM AND E	ENVIRONMENTAL CHECKLIST FORM	1
ENVIR	RONMENT	AL FACTORS POTENTIALLY AFFECTED	14
EVALU	JATION O	F ENVIRONMENTAL IMPACTS	14
1.	AESTH	ETICS	14
2.	AGRICU	JLTURE RESOURCES	16
3.		ALITY	
4.		GICAL RESOURCES	
5.	CULTU	RAL RESOURCES	28
6.		GY AND SOILS	
7.		HOUSE GAS EMISSIONS	
8.	HAZARI	DS AND HAZARDOUS MATERIALS	38
9.		LOGY AND WATER QUALITY	
10.		SE AND PLANNING	
11.		AL RESOURCES	
12.			
13.		ATION AND HOUSING	
14.		SERVICES	
15.	_	ATION	
16.	_	PORTATION/TRAFFIC	_
17.		ES AND SERVICE SYSTEMS	
18.		TORY FINDINGS OF SIGNIFICANCE	
LIST OF	PREPARE	ERS	75
Appen	dices		
	ppendix A	Aesthetic Resources Photographic Documentation	
	• •		
	ppendix B	Air Quality Data Sheets	
А	ppendix C	Traffic Impact Study	
List of	Figures	;	
F	igure 1	Regional Location Map	2
F	igure 2	Project Vicinity Map	3
F	igure 3	Locations of 2002 Master Plan Projects	7
F	igure 4	Location of Los Angeles Pierce College 2010 Master Plan Update Projects	10

List of Tables

Table 1	Status of Projects Proposed under the 2002 Los Angeles Pierce College Facilities Master Plan	5
Table 2	Existing and Projected Student Enrollment at Pierce College	9
Table 3	New/Added and Modified Projects Proposed under Los Angeles Pierce College 2010 Master Plan Update	9
Table 4	Comparison of Environmental Impacts – 2002 Pierce College Master Plan and 2010 Master Plan Update	12
Table 5	Forecast of Regional Construction Emissions	19
Table 6	Forecast of Mitigated Regional Construction Emissions	20
Table 7	Forecast of Localized Construction Emissions	21
Table 8	Forecast of Regional Operational Emissions	22
Table 9	Local Area Carbon Monoxide Dispersion Analysis	23
Table 10	Forecast of Localized Operational Emissions	23
Table 11	Estimate of Revised Project-Related Greenhouse Gas Emissions in Metric Tons per Year	35
Table 12	Project Consistency with Climate Action Team Strategies	38
Table 13	Community Noise Exposure Levels (Exterior) and Land Use Compatibility	52
Table 14	Noise Measurements at Noise Sensitive Uses	52
Table 15	Los Angeles Department of Transportation Threshold Criteria	57
Table 16	Existing (2008–2009) Intersection Levels of Service	58
Table 17	Intersection Level of Service Analysis – Cumulative Base and Cumulative-Plus-Project Conditions	61
Table 18	Projected Wastewater Generation Based on FTE Enrollment	68

Acronyms and Abbreviations

2002 EIR 2002 Los Angeles Pierce College Facilities Master Plan

Environmental Impact Report

2002 FEIR 2002 Los Angeles Pierce College Facilities Master Plan Final

Environmental Impact Report

2002 Master Plan 2002 Los Angeles Pierce College Facilities Master Plan

2006 CAT Report Climate Action Team Report to Governor Schwarzenegger

and the Legislature

2010 Master Plan Update Los Angeles Pierce College 2010 Master Plan Update

ADA Americans with Disabilities Act

AQMP Air Quality Management Plan

ARB Air Resources Board
Basin South Coast Air Basin

BMP best management practice

Caltrans California Department of Transportation

carbon dioxide equivalent CO2e

CAT Climate Action Team
CBC California Building Code

CDMG California Division of Mines and Geology
CEQA California Environmental Quality Act

CFR Code of Federal Regulations

CH₄ methane

CNEL Community Noise Exposure Level

CO carbon monoxide CO₂ carbon dioxide

College Los Angeles Pierce College

dBA A-weighted decibels

DBH diameter at breast height

FTE full-time equivalent GHG greenhouse gas

HVAC heating, ventilation and air-conditioning
LACCD Los Angeles Community College District
LADOT Los Angeles Department of Transportation
LADWP Los Angeles Department of Water and Power

LAUSD Los Angeles Unified School District

LEED Leadership in Energy and Environmental Design

LOS level of service

LST Localized Significance Threshold

LUST leaking underground storage tank

MBTA Migratory Bird Treaty Act mg/kg milligrams per kilogram

MMT CO₂e million metric tons of carbon dioxide equivalent

 N_2O nitrous oxide NO_X nitrogen oxides

 O_3 ozone

OSHA Occupational Safety and Health Administration

PM10 particulate matter

PM2.5 fine particulate matter

RCPG Regional Comprehensive Plan and Guide
RWQCB Regional Water Quality Control Board

SCAG Southern California Association of Governments
SCAQMD South Coast Air Quality Management District

SO_X oxides of sulfur

SUSMP Standard Urban Stormwater Mitigation Plan

TACs toxic air contaminants

THP total petroleum hydrocarbons

TIA Transportation Impact Assessment

TIMP Transportation Improvement Mitigation Program

UBC Uniform Building Code

UST underground storage tank

V/C volume to capacity

VMT vehicle miles travelled

WCSP Warner Center Specific Plan

ZIMAS Zoning Information and Map Access System

ADDENDUM AND ENVIRONMENTAL CHECKLIST FORM

1. Project Title

Los Angeles Pierce College 2010 Master Plan Update

2. California Environmental Quality Act Lead Agency Name and Address

Los Angeles Community College District 770 Wilshire Boulevard Los Angeles, CA 90017

3. Contact Person and Phone Number

Dr. Joy McCaslin, President, Los Angeles Pierce College Phone: 818.719.6408

4. Purpose of Addendum

This addendum to the 2002 Los Angeles Pierce College Facilities Master Plan Final Environmental Impact Report (2002 FEIR) analyzes potential environmental impacts that would result from implementation of the Los Angeles Pierce College 2010 Master Plan Update. The 2002 FEIR evaluated the impacts of implementation of the 2002 Master Plan.

The proposed 2010 Master Plan Update, as described in this addendum, does not create any of the conditions described in Section 15162 of the State CEQA Guidelines that call for the preparation of a subsequent EIR. No new significant impacts would occur, and no previously examined significant effects would be substantially more severe than shown in the 2002 FEIR. Thus, an addendum to the certified 2002 FEIR is the appropriate environmental documentation for the proposed 2010 Master Plan Update.

5. Project Location

Los Angeles Pierce College (College) is located in the western portion of the San Fernando Valley in the City and County of Los Angeles. Regional access to the College is provided by two freeways, the Ventura Freeway (U.S. 101) and the San Diego Freeway (Interstate 405). The Ventura Freeway is located approximately 0.5 mile south of the College, and the San Diego Freeway is located approximately 6 miles to the east. Figure 1 provides a map of the Los Angeles region in which the College is located.

Pierce College is located at 6201 Winnetka Avenue in the community of Woodland Hills in the City of Los Angeles. The College is located in the Canoga Park-Winnetka-Woodland Hills-West Hills Community Plan Area, one of 35 community plan areas in the City of Los Angeles. The College is bounded by Victory Boulevard to the north, Oxnard Street to the south, Winnetka Avenue to the east, and De Soto Avenue to the west. The College, which is located east of the Warner Center Business District, encompasses a total land area of approximately 426 acres. Figure 2 shows the project site and the surrounding area.

Although the College is located in the Los Angeles metropolitan area, the 426-acre campus setting includes 2,200 trees, numerous rose bushes, a nature preserve, a botanical garden, and a forest area that boasts giant redwoods. Most of the College's educational buildings are located in the core area of the campus. Other important campus areas include the athletic/recreational and horticultural areas. Approximately 226 acres are devoted to an agricultural laboratory/farm that features an equestrian center and small herds of cattle, sheep, and goats.

Figure 1: Regional Location Map

Bassett St Bassett St Bassett St Hartland St Hartland St Vanowen St Welby Way Skouras Dr Moberly Pl Archwood St Archwood St Kittndge St Kittridge St De Soto Ave Lemay St Hamlin St Haynes St Campus Boundary Deering Cir Victory Blvd Pierce Coll Victory BIV Erwin St Calvert St Oxnard St ointe Pl Exhibit PI Exhibit Ct Oxnard St Califa St Tiara St Namer Center Lr 250 500 1,000 Martha St

Figure 2: Project Vicinity Map

ank Blvd

Source: ESRI StreetMap North America (2008)

101

Ventura Blvd

The Canoga Park-Winnetka-Woodland Hills-West Hills Community Plan Area covers approximately 29 square miles in the western portion of the City of Los Angeles. According to the Canoga Park-Winnetka-Woodland Hills-West Hills Community Plan (adopted), approximately 59% of the total land uses in this community plan area are residential uses. Open space uses make up 12% of the total uses; commercial uses, 5%; and industrial uses, 4%. Approximately 12% of the land uses are open space-related uses, while 19% are street uses.

6. Project Sponsor's Name and Address

Los Angeles Pierce College 6201 Winnetka Avenue Woodland Hills, CA 91371

7. Assessor's Parcel Number: 2149007902

8. General Plan Designation: Open Space and Public Facilities

9. Zoning: Open Space (OS-1XL), Public Facilities (PF-1XL)

10. Background

The 2002 Los Angeles Pierce College Facilities Master Plan (2002 Master Plan) was recently revised to accommodate changes pertaining to student enrollment projections and facility requirements. This addendum for the proposed Los Angeles Pierce College 2010 Master Plan Update (2010 Master Plan Update) has been prepared in accordance with the California Environmental Quality Act (CEQA) Guidelines, Section 15063, to determine whether the proposed 2010 Master Plan Update would result in a new significant effect on the environment that was not previously identified in the 2002 Los Angeles Pierce College Facilities Master Plan Environmental Impact Report (2002 EIR). The Los Angeles Community College District (LACCD) is the lead agency for the proposed 2010 Master Plan Update.

Pierce College, a two-year community college that was founded in 1947, is located in the southwest corner of the San Fernando Valley in the City of Los Angeles. More specifically, the College is located within the community of Woodland Hills and occupies approximately 426 acres. Pierce College includes educational and administrative facilities, agricultural land and facilities, surface parking lots, athletic fields and sports facilities, and open space. Approximately 226 of the College's 426 acres provide space for a farm, which is used as part of the College's agricultural program.

Pierce College is one of nine colleges in the LACCD and is fully accredited by the Western Association of Schools and College. It offers courses in 100 disciplines and has a student population of approximately 23,000 each semester.⁴

In 2002, the LACCD approved the Los Angeles Pierce College Facilities Master Plan. The master plan established a physical framework for the College and supported the school's mission as it expands its facilities to meet future demand. Project objectives of the 2002 Master Plan included creating a more active and productive College, improving the image of the school, enhancing land resources, creating public/private partnerships, developing new educational programs, and providing facilities to meet projected enrollment by 2010.

¹ Canoga Park-Winnetka-Woodland Hills-West Hills Community Plan. Available:

http://cityplanning.lacity.org/complan/pdf/cpksumlu.pdf. Accessed: June 28, 2009.

² Ibid.

³ Ibid.

⁴ About Pierce College. Available: http://www.piercecollege.edu/pierce_about.asp>. Accessed: June 25, 2009.

The 2002 Master Plan includes the following four types of projects:

- new construction,
- · reconstruction and renovation,
- demolition, and
- public/private partnership projects.

A total of 33 projects were proposed under the 2002 Master Plan. However, subsequent to adoption of the 2002 Master Plan, six of the nine public/private partnership projects were cancelled. One of the new construction projects and one of the renovation projects were also cancelled. Additionally, four of the structures proposed for demolition under the 2002 Master Plan are no longer to be demolished. The remaining projects are either under construction or still scheduled for construction and/or renovation. Table 1 shows the status of the projects proposed under the 2002 Master Plan. Figure 3 shows the locations of the 2002 Master Plan projects.

Table 1: Status of Projects Proposed under the 2002 Los Angeles Pierce College Facilities Master Plan

No.	Project Name	Construction Schedule as of 2002	Current Status May 2010
	New Constructi	on Projects	
1	Agriculture/Science/Nursing Building (renamed Center for the Sciences)	March 2004-Aug. 2005	Currently under construction
2	Technology Center (renamed the Green Technologies Building under the 2010 Master Plan Update)	May 2004–May 2005	Feb. 2012–Jan. 2014
3	Child Development Center	Feb. 2004–Jan. 2005	Currently under construction
4	Central Maintenance and Operations Facility (renamed the Maintenance and Operations Facility under the 2010 Master Plan Update)	Nov. 2005–Nov. 2007	Aug. 2010-Sept. 2011
5	New Gardner's Maintenance and Operations Facility (renamed the Maintenance and Operations Facility under the 2010 Master Plan Update)	May 2004-Dec. 2004	Aug. 2010-Sept. 2011
6	New Refrigeration Plant Maintenance and Operations Facility (renamed the Maintenance and Operations Facility under the 2010 Master Plan Update)	March 2005–Feb. 2006	Aug. 2010-Sept. 2011
7	Automotive Maintenance and Operations Facility, Student Food Services Facility (renamed the Automotive and New Technical Education Facilities under the 2010 Master Plan Update)	Sept. 2006–Sept. 2007	Feb. 2012–June 2013
8	Horticulture Classroom Building and Greenhouse (renamed the Horticulture/ Animal Science Lab under the 2010 Master Plan Update)	Dec. 2003–Dec. 2004	Jan. 2011–Jan. 2012
NA	Water Reclamation Facility	Aug. 2004-Dec. 2005	Cancelled
9	Campus Police Station	On hold	Completed
10	Equestrian Education Center	Feb. 2004-Aug. 2004	Completed
11	Admissions/Counseling/Student Services Building	Sept. 2004-Feb. 2006	Completed
	Reconstruction, Renovation, and Modernization	on Projects (Proposition A	Bond Projects)
12	Life Science/Chemistry/Physics Building	Sept. 2005–March 2006	To be completed Oct. 2012
13	Administration Building (lobby renovation, exterior renovation, interior renovation)	Aug. 2002–Aug. 2006	To be completed Oct. 2012
14	Campus Center	Sept. 2008-Sept. 2009	To be completed Oct. 2012

No.	Project Name	Construction Schedule as of 2002	Current Status May 2010
15	Computer Science/Computer Learning Center	May 2005–Jan. 2006	To be completed Oct. 2012
16	Library	Apr. 2004–Oct. 2006	Completed
17	Behavioral Science, Social Science, Math, Business Education, English	Feb. 2004–Oct. 2004	To be completed Oct. 2012
18	Facility Offices	Jan. 2004-Sept. 2004	Completed
19	Fine Arts and Music	March 2005–Nov. 2005	To be completed Aug. 2010
20	Theatre Building (proposed performing arts and Americans with Disabilities Act [ADA] improvements)	Sept. 2003–July 2006	March 2011-Sept. 2011
21	Animal Science Facilities		Completed
22	Life Science/Natural Resources Management	Aug. 2003–Jan. 2004	Cancelled
23	Physical Education Facilities	On hold	Completed
24	Roadway, Walkway, Grounds, Parking Lot, and Entrance Improvements	Sept. 2003–Jan. 2010	Ongoing (completion in June 2013)
NA	Restroom/ADA Renovations	Jan. 2003-Sept. 2009	Oct. 2012
	Proposition A Bond Project	ts—Demolition Projects	
NA	Remaining Bungalows/Trailers	Jan. 2004-March 2004	Completed
NA	Child Development Center	Contingent on Los Angeles County Metropolitan Transportation Authority (Metro) agreement	Completed
NA	Business Office/Student Store	Prior to construction of new Technology Center	Completed
NA	Cafeteria/Associated Student Organization Trailer	Upon finding a partner for Student Dormitory Partnership	Cancelled
NA	Small Structures in Canyon de Lana	Aug. 2003-Jan. 2004	Cancelled
NA	Agricultural Sciences Building and Plant Facilities	Prior to construction for Phase II of Exhibition/ Events Center and Sciences Partnership Building	Cancelled
NA	Soils Lab/Horticulture Unit (proposed horticulture/animal science lab under the 2010 Master Plan Update)	Upon finding a suitable partner for the Sciences Building Partnership	Partial demolition has occurred
NA	Storage Structure in Horticulture Area	Dec. 2003-Dec. 2004	Cancelled
	Public/Private Partn	erships Projects	
25	Agriculture Education Experiences and Programs	Begin in Jan. 2003	In Progress
26	Produce Stand	Begin in Jan. 2003	In Progress
27	Agricultural Fields	Begin in Jan. 2003	In Progress
28	Sciences Partnership Building	Feb. 2007–July 2008	Cancelled
29	Horticulture Partnership	May 2003-Dec. 2004	Cancelled
30	Viticulture Partnership	Jan. 2004-Oct. 2004	Cancelled
31	East Student Dormitory	Sept. 2008-Aug. 2009	Cancelled
32	Student Housing Partnership	Sept. 2006-Aug. 2007	Cancelled
33	Life-Long Learning Residences Partnership	Aug. 2008–Aug. 2009	Cancelled
Sourc	e: Swinerton Consulting, 2009, 2010.		

Legend Campus Boundary Projects Cancelled East Student Domitory Horticulture Partnership 2 Life Science/Natural Resource Management 4 Life-Long Learning Residences Partnership Sciences Partnership Building Student Housing Partnerships Viticulture Partnership Agricultural Fields Agriculture Education Experiences and Programs Produce Stand Projects Under Constrution Agriculture/Science/Nursing Building Child Development Center Projects Completed as of May 2010 21 Animal Science Facilities Campus Police Station 10 Equestrian Education Center Admissions/Counseling/Student Services Building 18 Facility Offices Physical Education Facilities Projects to be Completed as part of 2010 Master Plan Upda Administration Building Automotive M&O Facility, Student Food Services Fac. BehSc, SocialSc, Math, Busi Edu, English Campus Center Central Maintenance & Operations Facility Computer Science/Computer Learning Center Fine Arts and Music 6 Horticulture Classroom Building & Green house Life Science/Chemistry/Physics Building 63 New Gardner's M&O Facility 6 New Refrigeration Plant M&O Facility Roadway Walkway Ground s, Parking Lot&Entrance Improvements Technology Center Theatre Building

Figure 3: Locations of 2002 Master Plan Projects

11. Project Purpose and Need

The purpose of the proposed 2010 Master Plan Update is to allow the College the flexibility to account for changing conditions, including student enrollment projections. The 2010 Master Plan Update emphasizes efficient use of the College's resources to meet its educational mission and strategic plan. The 2010 Master Plan Update would build upon the 2002 Master Plan and establish a framework for the College's future, aligning its physical environment with its mission and academic plan. The 2002 Master Plan was developed to guide projects, many of which are nearly complete, initiated under Bond A/AA. With the passage of Measure J, this updated plan creates a flexible approach that ensures the efficient use of resources, sets priorities, and develops strategies for implementation.

12. Project Description and Background

Measure J, which passed in November 2008, authorized the LACCD to issue general obligation bonds to fund specific projects certified by the Board of Trustees of the district. Projects could include acquiring or leasing land and/or facilities, improving and repairing security and infrastructure, expanding education to meet the needs of the community, or acquiring furnishings and equipment for modernization, renovation, improvement, and new construction projects.

With the passage of Measure J, the College has updated its master plan to guide its future development. The proposed 2010 Master Plan Update modifies the master plan that was adopted in 2002. Since 2002, a number of individual projects have been cancelled or modified, as indicated in Table 1. Also, student enrollment has been on the decline the last few years; therefore, future enrollment projections have been revised. The recent state budget cuts, as well as increased opportunities for distance learning, have also affected enrollment.

The 2002 Los Angeles Pierce College Facilities Master Plan Final Environmental Impact Report (2002 FEIR) was prepared by ICF Jones & Stokes (then Myra L. Frank & Associates) to identify environmental impacts related to the 2002 Master Plan. The level of impact after mitigation was considered significant for the following issue areas: aesthetics, air quality, historic resources, and transportation (Myra L. Frank & Associates 2002). All other impacts were considered less than significant or less than significant with implementation of proposed mitigation measures.

Pierce College, like other agencies funded by the State of California, has experienced major budget cuts. The result has been a reversal of the enrollment growth trends that occurred over the past 5 years. The budget cuts have forced the College to reduce the section of classes it will offer for the 2009–2010 academic year by 17.5%. The College expects an average enrollment reduction of 8%–10%, pending final spring 2010 enrollment. The California community colleges have been encouraged to reduce their course offerings substantially, and the LACCD has responded by directing all nine colleges to meet significantly reduced enrollment targets. The College has complied with this directive for 2009–2010 and anticipates doing so again in 2010–2011."

It was noted in the 2002 Master Plan that Pierce College had a full-time-equivalent (FTE) student enrollment of 13,591. Under the 2002 Master Plan, 2010 was used as the buildout year. Currently, the projected FTE student enrollment for 2010 is 14,500. (In the 2002 Master Plan, the estimated FTE enrollment for 2010 was 15,960.) The current 2008–2009 FTE student enrollment is 16,079. (In 2002, it was estimated at 15,100.)

The proposed 2010 Master Plan Update's buildout year is 2015. The estimated FTE student enrollment for 2014–2015 is 15,500. Projections show the College adding 1,909 FTE students between 2002 and 2015 (15,500 in 2015 less 13,591 in 2002).

Table 2 shows the FTE levels for 2002, the existing conditions (2008–2009), and project buildout (2015).

⁵ Email communication with Pierce College staff member Nabil Abu-Ghazaleh, December 23, 2009.

Table 2: Existing and Projected Student Enrollment at Pierce College

Year	Student Enrollment (FTE)	Student Head Count			
2002 Master Plan EIR					
2002 (baseline)	13,591				
2010 (buildout year)	15,960	22,880			
2010 Master Plan Update					
2008–2009 (existing)	16,079	22,164			
2010 (projected)	14,500	21,610			
2015 (buildout year)	15,500	22,931			
Source: Los Angeles Pierce College (November 16 and 30, 2009, email communication).					

Under the proposed 2010 Master Plan Update, six modified construction projects are proposed for the College, and four renovation projects are proposed. Table 3 describes the individual projects proposed under the Los Angeles Pierce College 2010 Master Plan Update. Figure 4 identifies the locations of the projects proposed under the Los Angeles Pierce College 2010 Master Plan Update.

Table 3: New/Added and Modified Projects Proposed under Los Angeles Pierce College 2010
Master Plan Update

No	Project Name	Approximate Size (sq ft)	Construction Schedule
New	Construction		
1	Green Technologies Building*	70,000	May 2012-May 2014
2	Digital Arts and Media Building	70,000	Oct. 2012-Nov. 2014
3	Library Learning Crossroads Building	80,000	Feb. 2011–Oct. 2012
4	Expanded Automotive and New Technical Educational Facilities	20,000-square-foot addition to existing building	Feb. 2012–June 2013
5	Maintenance and Operations Facility**	30,000	Aug. 2010-Sept. 2011
6	Horticulture/Animal Science***	15,451	Jan. 2011-Jan 2012
Total	Square Footage	285,451	
Reno	ovations and Demolitions		
7	Demolish Existing Library	No new square footage	Existing library to be demolished. New construction of digital arts and media building
8	Performing Arts ADA Improvements and ADA Landscaping****	No new square footage	March 2011–Sept. 2011
9	Stadium Area Improvements	No new square footage	Feb. 2011–Aug. 2011
10	Infrastructure and Central Plant Extensions	No new square footage	July 2007–Jan. 2010
			

Source: Swinerton Consulting (August 2009 and May 2010 personal communication).

^{*} Modification of 2002 Technology Center.

^{**} Modification of 2002 maintenance and operations facility.

^{***} Modification of 2002 horticulture classroom building, greenhouse, and renovation.

^{****} Modification of 2002 theater.

Figure 4: Locations of Los Angeles Pierce College 2010 Master Plan Update Projects

Pierce College 2010 Master Plan Update Construction Projects

Under the proposed 2010 Master Plan Update, three of the projects that had been proposed under the 2002 Master Plan would be modified.

- The 2002 Technology Center would be modified to consist of a 70,000-square-foot Green Technologies Building. The proposed Green Technologies Building would house the College's new Green Technologies Program, with classroom and applied learning spaces that employ new technologies. The building would be certified under the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED) program, as would all new construction.
- The 2002 Maintenance and Operations facility would also be modified under the proposed 2010 Master Plan Update. Under the 2002 Master Plan, a new 20,000-square-foot Central Plant Facilities Building, a 15,000-square-foot warehouse, secured/sheltered (carport) parking for 40 vehicles, an 11,710-square-foot warehouse, and 6,670 square feet of garage space were proposed. These 2002-proposed facilities totaled 53,380 square feet. Under the 2010 Master Plan Update, these facilities would be consolidated into one structure totaling approximately 30,000 square feet.
- In addition, the 2002 horticulture classroom building, greenhouse, and renovation has become the Horticulture/Animal Science Building, and the 2002 theater is now limited to performing arts/Americans with Disabilities Act (ADA) improvements.

New proposed 2010 Master Plan Update construction is as follows:

- A 70,000-square-foot Digital Arts and Media Building would be developed. The building, which would be LEED certified, would serve as a bridge between the existing applied technologies, liberal arts, and fine arts programs.
- A Library "Learning Crossroads" Building would be developed as a hybrid building under the
 proposed 2010 Master Plan Update. The 80,000-square-foot structure would be the center of
 campus activity and would include a library, student union space, learning center, resource
 center, technology resources, food services, and an art gallery. As a hybrid building, the
 proposed structure would reduce the amount of square footage required for individual standalone facilities.
- An Expanded Automotive Facility and New Technical Educational Facilities; approximately 20,000 square feet of additional space is proposed under the 2010 Master Plan Update.

Renovations

Renovation work would include the following:

- ADA improvements for the performing arts building,
- stadium area improvements,
- infrastructure and central plant extensions, and
- renovation of the horticulture/animal science and student learning environments.

Table 4 compares the environmental impacts of the 2002 Master Plan with those of the proposed 2010 Master Plan Update. As shown in the table, both the 2002 Master Plan and the 2010 Master Plan Update would result in either no impacts or less-than-significant impacts related to agricultural resources, land use, mineral resources, population and housing, and recreation. With mitigation incorporated, both the 2002 and 2010 plans would result in less-than-significant

Table 4: Comparison of Environmental Impacts – 2002 Pierce College Master Plan and 2010 Master Plan Update

Environmental Resource Area	2002 Pierce College Master Plan	2010 Master Plan Update
Aesthetics	Significant after Mitigation.	Less than Significant. No new significant impacts identified.
Agricultural Resources	No Impact.	Less than Significant. No new significant impacts identified.
Air Quality	Significant after Mitigation.	Significant after Mitigation. Significant impacts are less severe.
Biological Resources	Less than Significant with Mitigation.	Less than Significant with Mitigation. No new significant impacts identified.
Cultural Resources	Significant after Mitigation.*	Significant after Mitigation.* Significant impacts are less severe.
Geology and Soils	Less than Significant with Mitigation.	Less than Significant with Mitigation. No new significant impacts identified.
Hazards and Hazardous Materials	Less than Significant with Mitigation.	Less than Significant with Mitigation.
Hydrology and Water Quality	Less than Significant with Mitigation.	Less than Significant with Mitigation. No new significant impacts identified.
Land Use and Planning	Less than Significant.	Less than Significant. No new significant impacts identified.
Mineral Resources	No Impact.	No Impact. No new significant impacts identified.
Noise	Less than Significant with Mitigation.	Less than Significant with Mitigation. No new significant impacts identified.
Population and Housing	Less than Significant.	Less than Significant. No new significant impacts identified.
Public Services	Less than Significant with Mitigation.	Less than Significant with Mitigation. No new significant impacts identified.
Recreation	Less than Significant.	Less than Significant. No new significant impacts identified.
Transportation	Significant after Mitigation.	Less than Significant with Mitigation. No new significant impacts identified.
Utilities and Service Systems	Less than Significant with Mitigation.	Less than Significant with Mitigation. No new significant impacts identified.

^{*} Significant and unmitigable if retention of the business office/student store and Quonset hut (Exposition Hall) building is not feasible and those buildings are demolished.

Source: ICF Jones & Stokes, 2009.

impacts related to biological resources, geology, hazards, hydrology, noise, public services, and transportation and utilities. Under the 2002 plan, significant unavoidable impacts on aesthetics were identified; less-than-significant aesthetics impacts are anticipated under the 2010 Master Plan Update. Under the 2002 Master Plan, significant unavoidable impacts on air quality and cultural resources were identified. With mitigation, less severe significant air quality and cultural impacts would occur under the proposed 2010 Master Plan Update.

13. Construction Phasing

With the required approvals and permits in place, construction activities would be expected to begin in 2010 and end in 2014. The infrastructure and central plant extensions began in 2007 and would continue under the proposed 2010 Master Plan Update.

Table 3, included above, shows the construction schedule for all projects proposed under the Los Angeles Pierce College 2010 Master Plan Update.

14. Surrounding Land Uses and Setting

As stated above, the College is located in a developed area of the City of Los Angeles. The area immediately surrounding the College is developed with mostly residential uses. Residential uses are located to the north, south, southeast, and southwest, while Warner Center is located immediately west of the College. The Metro Orange Line includes a station at the College along Winnetka Avenue and a second station at De Soto Avenue and Victory Boulevard.

15. Other Public Agencies Whose Approval May Be Required (e.g., permits, financing approval, or participation agreement)

- State of California
 - Division of the State Architect
 - Department of Food and Agriculture
 - o Department of General Services
 - o Department of Toxic Substances Control
 - State Fire Marshal
- Regional Water Quality Control Board (National Pollutant Discharge Elimination System Permit)
- South Coast Air Quality Management District (stationary-source permits)
- Los Angeles County Metropolitan Transportation Authority
- County of Los Angeles
 - Department of Health Services
 - Department of Public Works
- City of Los Angeles
 - Department of Water and Power
 - Fire Department
 - o Public Works Department (grading permit)
 - o Bureau of Engineering
 - Bureau of Sanitation
 - Department of Transportation

ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED

AESTHETICS. Would the project: a) Have a substantial adverse effect on a scenic vista?								
Issu	Issues			Potentially Significant	Less-th Signific Impact Mitigati Incorpo	ant with ion	Less-than- Significant Impact	No Impact
EVA	LUATION OF ENVIRON	MENT	AL IMPACTS					
	Geology/Soils		Population/Housin	g				
	Cultural Resources		Noise			Mandatory Findings of Significance		
	Biological Resources		Mineral Resources	Mineral Resources		Utilit	ies/Service	Systems
	Air Quality		Land Use/Planning	Land Use/Planning			sportation/	Γraffic
	Agriculture Resources		Hydrology/Water 0	Quality		Rec	reation	
	Aesthetics		Hazards and Hazardous Materials			Public Services		

No Impact (designated scenic vistas). A review of the Canoga Park-Winnetka-Woodland Hills-West Hills Community Plan indicates that no officially designated scenic vistas or views have been identified in the immediate vicinity of Pierce College. The nearest designated scenic vistas are along the Mulholland Scenic Parkway and the Ventura/Cahuenga Boulevard corridor; however, the proposed 2010 Master Plan Update would not affect views from these referenced scenic vantage point locations because of the moderate nature of the design changes that would occur, the separating distance, the elevated configuration of the Ventura Freeway, and intervening development and topography. Hence, no impact on such officially designated scenic views would occur as a result of the revised project.

Less-than-Significant Impact (unofficial on-campus scenic vistas). Detailed visual analysis of the Pierce College campus and its visual setting was provided in the 2002 FEIR. That analysis identified several unofficial scenic views at the Pierce College campus that are considered scenic resources of the neighboring communities but concluded that impacts on such views, occurring as a result of 2002 Master Plan project components, would be less than significant. Scenic resources include the undeveloped rolling hills in the southern portion of the campus and the agricultural fields in the northwest corner of the campus adjacent to De Soto Avenue and Victory Boulevard. The southwest portion of the campus offers panoramic views of other areas of the campus, the San Fernando Valley, and the Santa Susana Mountains to the north. In contrast to the 2002 Master Plan (e.g., previously proposed Viticulture Partnership), the proposed 2010 Master Plan Update would locate only one facility on the undeveloped open space in the southern portion of the campus. The one-story approximately 30,000-square-foot Maintenance and Operations (M&O) facility is currently proposed where the Lifelong Learning Center Residential facility parking lot—comparable in size to the M&O facility—was previously proposed in 2002. This area is characterized by nearly flat-to-rolling terrain that transitions to a steep grade along the southern border of the campus. The existing dense vegetation, consisting of trees and tall shrubbery, serves to largely (but not completely) block views across this portion of the campus, as well as views south and southeast to off-campus locations, and

Issues		Less-than- Significant		
		Impact with	Less-than-	
	Potentially	Mitigation	Significant	
	Significant	Incorporated	Impact	No Impact

views north into the campus. For purposes of comparison, the site for the proposed M&O facility is a lowered area and is much less visible to sensitive south-of-campus viewers than is the hilly area in the south central area of campus to the west, adjoining the theater building (an area that is highly visible to south-of-campus residents). Design of the M&O facility would include building it into the higher terrain found on the south and southeast edges of the building site to keep its elevation low and diminish its visual prominence as well as installing replacement landscaping of sufficient density and height to screen north-facing views onto the campus by sensitive viewers. Views from Oxnard Street, south of the campus, would not be significantly affected because the roofline of the M&O facility would not protrude above the horizon; only the roof would be partially visible.

The 2010 Master Plan projects would not significantly modify the agricultural fields in the northwest corner of the campus. The extensive agricultural fields to the north and south of El Rancho Drive would, therefore, remain intact, and the open space character of the setting would not be significantly changed because of the relatively small scale and massing of the proposed features in contrast to the expansive character of most informal views across the campus. Therefore, these views of campus open space would continue to be available to the general public, students, and faculty who use the adjacent pedestrian trails. In addition, informal views of key off-campus visual resources, such as the Chalk Hills to the south or to the more distant Santa Susana Mountains and Simi Hills (approximately 5 to 6 miles to the north and northwest, respectively), would not be adversely affected by the projects proposed as part of the 2010 Master Plan Update (see Photos 1–6 in Appendix A). Therefore, the visual impact would remain less than significant.

b) Substantially damage scenic resources, including trees, rock outcroppings, and historic buildings, within a state scenic highway?				\boxtimes
--	--	--	--	-------------

No Impact. As described above in response 1(a), the nearest scenic highways are Mulholland Scenic Parkway and the Ventura/Cahuenga Boulevard corridor, which are located approximately 2.5 miles and 0.6 mile, respectively, south of the College. Given the distance from Pierce College, topographic differences, mature vegetation, and intervening development, including the elevated configuration of the Ventura Freeway through Woodland Hills, the possibility of unencumbered sightlines of development under the proposed 2010 Master Plan Update occurring from scenic highways would be precluded. No impacts would occur.

c) Substantially degrade the existing visual		\square	
character or quality of the site and its surroundings?			

Less-than-Significant Impact. The proposed 2010 Master Plan Update would include the retention and renovation of existing classroom buildings. It would not introduce new buildings, student activity spaces, or parking facilities in the undeveloped open space in the southern portion of the campus. As described in response 1(a), above, the southern portion of the College is considered a scenic resource for the neighboring communities. In addition, the 2010 Master Plan Update would not significantly modify the agricultural fields in the northwest corner of the campus. The approximately 480-acre expanse of agricultural land to the north along Victory Boulevard would remain intact, as would the agricultural fields/open space to the south across El Rancho Drive. New construction is proposed primarily within the campus core, an area where there is no uniformity in scale or architectural design among the extant buildings. As with existing development, any proposed development in the campus core would be oriented along the campus' existing northwest-to-southeast spine and sited to improve circulation and integrate exterior and interior campus spaces. Such development would take full advantage of the varied surrounding landscape and topographic features. Although core development would not be uniform in terms of height or massing, all new development would be sympathetically integrated and compatible with existing campus development in terms of scale, architectural style, color, materials, and landscape design. The proposed 2010 Master Plan Update would not substantially degrade the existing visual character or quality of the site or its surroundings. This would remain a less-than-significant impact.

Issues	Potentially Significant	Less-than- Significant Impact with Mitigation Incorporated	Less-than- Significant Impact	No Impact			
d) Create a new source of substantial light or glare that would adversely affect daytime or nighttime views in the area?							
Less-than-Significant Impact. The 2002 EIR identified less-than-significant impacts related to light and glare resulting from construction and operation of projects identified in the 2002 Master Plan. In addition to the renovation of existing buildings, the proposed 2010 Master Plan Update would include the construction of new buildings, parking lots, and way-finding features, as well as the installation of new landscape elements, in a manner that would be compatible with the existing campus environment. New sources of nighttime lighting would be added and, in limited instances, would be visible from outside the campus; however, the revised project's lighting design features (i.e., LEED-based efficient designs and cut-off shielded fixtures angled to be at least 45 degrees below horizontal) and the sizeable intervening distances that separate sensitive viewers from light sources would preclude significant impacts and/or render such lighting only negligibly noticeable. New signage and lighting along walkways and in parking areas would incorporate LEED-certified, energy-efficient units with filtering devices. In addition, fixtures would be positioned and directed to the ground to avoid spillover and sky-glow lighting effects. Most of the new lighting would be for the central part of the College and located far away from nearby residential uses. As such, the potential for spillover and glare impacts on adjacent residential properties would be low. New buildings and structures would be designed with appropriate colors and textures, as well as non-reflective materials. These would be integrated into the adjoining landscape so as not to produce significant glare, spillover light, or sky-glow effects. This would be considered a less-than-significant impact.							
2. AGRICULTURE RESOURCES: In determining wheth significant environmental effects, lead agencies may refer and Site Assessment Model (1997) prepared by the Californ model to use in assessing impacts on agriculture and farm	to the Califo nia Departm	rnia Agricultent of Conse	ural Land Evrvation as a	valuation			
a) Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?							
Less-than-Significant Impact. The 2002 FEIR found that ap Prime or Unique Farmland would be converted for the development, the child development center, and the new maintenance affect less than 5% of the designated Prime and Unique Farm relatively small amount of farmland that would be developed and master plan goal of enhancing land resources and would be of mission, the overall impact would not be significant.	oment of projece and opera nland on cand the fact tha	ects such as ations facility. apus. It was t the propose	the equestriction. This develoconcluded the definition of the desired the desi	an education pment would at, given the ould fulfill the			
A number of the projects identified in the 2002 FEIR would be cauded update. However, the water reclamation facility, which, previous Farmland, would not be carried forward under the proposed 201 significance of previously estimated impacts. Therefore, becauding Farmland, impacts would remain as previously estimated.	usly, could h 0 Master Pla use no new ¡	ave been pland n Update, the projects woul	aced on Primereby reducind be placed	ne or Unique g the level of			
b) Conflict with existing zoning for agricultural use or a Williamson Act contract?				\boxtimes			
No Impact There is no Land Conservation Act (i.e. Williamson	n Act) contrac	at for the site	The College	is zoned as			

No Impact. There is no Land Conservation Act (i.e., Williamson Act) contract for the site. The College is zoned as Open Space and Public Facilities. Therefore, the proposed 2010 Master Plan Update would not conflict with any Williamson Act contract or agricultural zoning. No impact would occur.

Issues	Potentially Significant	Less-than- Significant Impact with Mitigation Incorporated	Less-than- Significant Impact	No Impact
c) Involve other changes in the existing environment which, due to their location or nature, could result in conversion of Farmland, to non-agricultural use?				\boxtimes
No Impact. The proposed 2010 Master Plan Update would enh the projects are geared toward the agricultural character of the campus. As was the case with the 2002 Master Plan, the proposed College's goal of enhancing land resources and would be comission. Therefore, no impacts would occur.	e school and osed 2010 M	would benef aster Plan Up	it the agricult odate would	tural uses or also fulfill the
3. AIR QUALITY: Where available, the significance crimanagement or air pollution control district may be relied Would the project:				
a) Conflict with or obstruct implementation of the applicable air quality plan?				\boxtimes
Management District (SCAQMD) is required, pursuant to the fee pollutants for which the Basin is in nonattainment (i.e., ozone matter [PM2.5]). As such, the project would be subject to the The AQMP contains a comprehensive list of pollution control is air quality standards. These strategies are developed, in paremployment projections prepared by the Southern California Assembly SCAG is the regional planning agency for Los Angeles, Orange Counties. It addresses regional issues related to transportation environment. With respect to air quality planning, SCAG has pre (RCPG), including the Growth Management and Regional Mobiliand transportation control portions of the AQMP. These documents and consistency analyses included in the AQMP. Be projections that originated from county and city general plans.	[O ₃], particula SCAQMD's A trategies to r rt, according sociation of G e, Ventura, R n, the econo pared the Re ility chapters, nents are use	ate matter [PAir Quality Maeduce emiss to regional covernments iverside, Sanmy, community which formed in the preside in the president in the preside	M10], and fir anagement F ions and ach population, I (SCAG). Bernardino, lity developments of the basis for eparation of the	ne particulate Plan (AQMP) ieve ambien housing, and and Imperianent, and the an and Guide the land use he air quality
The proposed 2010 Master Plan Update would involve the ren The revised project is consistent with both the general plan design			an existing of	development
Because the project is consistent with the local general plan at guidelines, the proposed 2010 Master Plan Update is consider proposed 2010 Master Plan Update-related emissions are acco Basin into attainment for all criteria pollutants. No impacts would	ered consiste unted for in t	ent with the in the AQMP, wi	region's AQN hich is crafte	IP. As such d to bring the
b) Violate any air quality standard or contribute substantially to an existing or projected air quality violation?				
Potentially Significant (as in the 2002 FEIR but less severe). As discuss	ed in respon	se 3(a), the j	oroject site is

located within the Basin. State and federal air quality standards are often exceeded in many parts of the Basin. A discussion of the project's potential short-term construction-period and long-term operational-period air quality impacts is provided below.

Issues	Potentially	Less-than- Significant Impact with Mitigation	Less-than- Significant	
	Significant	Incorporated	Impact	No Impact

Regional Construction Impacts

Construction of the proposed 2010 Master Plan Update has the potential to generate air quality impacts due to the use of heavy-duty construction equipment on the project site, construction workers traveling to and from the project site, and deliveries of building materials to the project site. Combustion emissions, primarily nitrogen oxides (NO_X), would emanate from the use of on-site construction equipment, such as graders, wheeled loaders, and cranes. During the finishing phase of construction, the application of architectural coatings (i.e., paints) and other materials could release emissions from reactive organic compounds (ROCs).

The proposed 2010 Master Plan Update would result in the construction of approximately 301,451 square feet of new academic space. A more detailed discussion pertaining to proposed new facilities and the renovation/modernization of existing facilities can be found in the Project Description and Background section of this addendum.

Construction is anticipated to start in June 2010 and conclude by February 2014. To provide a conservative estimate of potential worst-case impacts, the impact analysis assumes that up to six projects will be completed within the first two years after approval of this addendum. This assumption is conservative in that it concentrates a high level of construction activity at the earliest feasible date of the proposed 2010 Master Plan Update's overall development period. This point is particularly noteworthy since construction emissions are directly related to the amount and intensity of construction activities (i.e., emissions increase as the amount of construction increases), and emissions factors for certain components of project construction (i.e., construction workers' trips and delivery vehicle trips) decrease over time in response to the introduction of greater numbers of vehicles that emit lower relative levels of pollutant emissions.

The quantity, duration, and intensity of construction activity would have a substantial effect on the amount of construction emissions, as well as related pollutant concentrations, occurring at any one time. As such, the emissions forecasts provided herein reflect a specific set of conservative assumptions that are based on an expected construction scenario wherein a relatively large amount of construction is occurring in a relatively intensive manner. Because of this conservative assumption, actual emissions could be less than those forecast. If construction is delayed or occurs over a longer time period, emissions could be reduced because of (1) a more modern and cleaner burning construction equipment fleet mix and/or (2) a less intensive buildout schedule (i.e., fewer daily emissions occurring over a longer time interval). The construction equipment mix and the duration for each construction stage are detailed in the URBEMIS 2007 printout sheets, which are provided in the air quality appendix.

A conservative estimate of the revised project's worst-case construction emissions is provided in the table below. As shown therein, short-term emissions during construction are expected to exceed SCAQMD regional significance thresholds for NO_x. As such, impacts would be significant without incorporation of mitigation measures.

Issues		Less-than- Significant		
		Impact with	Less-than-	
	Potentially	Mitigation	Significant	
	Significant	Incorporated	Impact	No Impact

Table 5. Forecast of Regional Construction Emissions

	Criteria Pollutant Emissions (pounds per day)					
Construction Phase	ROC	NO _X	СО	SO _X	PM10	PM2.5
Single Project						
Demolition ^a	3	28	14	<1	22	6
Site Grading	3	25	14	<1	11	3
Structure Erection/Finishing	12	9	8	<1	1	1
Six Concurrent Projects						
Demolition ^a	3	28	14	<1	22	6
Site Grading	18	150	81	<1	66	19
Structure Erection/Finishing	70	55	47	<1	4	3
Maximum Regional Project Emissions	70	150	81	<1	66	19
SCAQMD Regional Emissions Threshold (lbs/day)	75	100	550	150	150	55
Exceed Threshold?	No	Yes	No	No	No	No

^a Demolition occurs only for one project and is therefore not factored in the "concurrent" emissions estimates.

Source: ICF Jones & Stokes, 2009.

Mitigation Measures

The following measure shall be implemented to reduce emissions from equipment. As described in the 2002 EIR, this measure would reduce emissions by approximately 10 percent. (However, as described in the 2002 EIR, construction-period air quality impacts were considered significant and unavoidable because of the larger building program than that proposed in this update.)

2002 EIR Mitigation Measures

AQ-1 Turn off equipment when not in use for longer than 5 minutes.

In addition to the mitigation above, which was included in the 2002 EIR, the following measure shall be employed to reduce emissions of NOX, ROC, PM10, and PM2.5 further in all off-road equipment:

AQ-2 Use EPA Tier 2 emissions-compliant equipment or newer.

Residual Impacts

Implementation of mitigation measure AQ-1 would result in a reduction of all criteria pollutant emissions by approximately 10 percent. Implementation of mitigation measure AQ-2 would, on average, reduce NO_X emissions from construction equipment operating on site by 55 percent, ROC emissions by 77 percent, and combustion-source particulate emissions (PM10 and PM2.5) by 55 percent.

As shown in the following table, with implementation of mitigation measures AQ-1 and AQ-2, regional NO_X emissions would be reduced to a level below the respective SCAQMD threshold. In addition, mass regional ROC, PM10, and PM2.5 emissions would be reduced to levels below their previous less-than-significant levels.

CO = carbon monoxide; $SO_x = oxides of sulfur$.

Issues		Less-than-		
		Significant		
		Impact with	Less-than-	
	Potentially	Mitigation	Significant	
	Significant	Incorporated	Impact	No Impact

Table 6. Forecast of Mitigated Regional Construction Emissions

	Criteria Pollutant Emissions (pounds per day)						
Construction Phase	ROC	NO _X	СО	SO _X	PM10	PM2.5	
Single Project							
Demolition ^a	2	25	14	<1	21	5	
Site Grading	1	11	14	<1	10	3	
Structure Erection/Finishing	11	4	8	<1	<1	<1	
Six Concurrent Projects							
Demolition ^a	2	25	14	<1	21	5	
Site Grading	4	68	81	<1	62	15	
Structure Erection/Finishing	65	27	47	<1	2	2	
Maximum Regional Project Emissions	65	68	81	<1	62	15	
SCAQMD Regional Emissions Threshold (lbs/day)	75	100	550	150	150	55	
Exceed Threshold?	No	No	No	No	No	No	

^a Demolition occurs only for one project and is therefore not factored in the "concurrent" emissions estimates.

Source: ICF Jones & Stokes, 2009.

Localized Construction Impacts

When quantifying mass emissions for localized analysis, only emissions that occur on site are considered. Consistent with SCAQMD Localized Significance Threshold (LST) methodology guidelines, emissions related to off-site delivery/haul truck activity and employee trips are not considered in the evaluation of localized impacts (SCAQMD 2003). As shown in the following table, localized emissions for all criteria pollutants would remain below their respective SCAQMD LST. As such, localized impacts that may result from construction-period air pollutant emissions would be less than significant. No additional mitigation measures are necessary.

Issues	5	Less-than- Significant Impact with	Less-than-	
	Potentially	Mitigation	Significant	
	Significant	Incorporated	Impact	No Impact

Table 7. Forecast of Localized Construction Emissions

	Criteria Pollutant Emissions (pounds per day)					ıy)
Construction Phase	ROC	NO _X	со	SO _X	PM10	PM2.5
Pierce College						
Demolition	<1	3	5	<1	20	4
Site Grading	1	11	13	<1	10	3
Structure Erection/Finishing	11	4	5	<1	<1	<1
Worst Case On-site Total ^a	11	11	13	<1	20	4
SCAQMD Localized Significance Threshold (lbs/day) ^b	_	212	1,510	_	35	8
Exceed Threshold?	No	No	No	No	No	No

^a Maximum concurrent localized project emissions for ROC, NO_X, and CO occur during the 1-month period when construction, architectural coating, and paving overlap. Maximum PM10 emissions occur during the 1-month demolition phase. All other maximums occur during grading/excavation.

Source: ICF Jones & Stokes, 2009.

Regional Operational Impacts

SCAQMD has also established significance thresholds to evaluate potential impacts associated with long-term project operations. Regional air pollutant emissions associated with project operations would be generated from the consumption of electricity and natural gas and the operation of on-road vehicles. Pollutant emissions associated with energy demand (i.e., electricity generation and natural gas consumption) are classified by SCAQMD as regional stationary-source emissions. Electricity is considered an area source because it is produced at various locations inside and outside of the Basin. Because it is not possible to isolate where electricity is produced, these emissions are conservatively considered to occur within the Basin and be regional in nature. Criteria pollutant emissions associated with the production and consumption of energy were calculated using emission factors from SCAQMD's CEQA Air Quality Handbook (appendix to Chapter 9) (SCAQMD 1993).

Mobile-source emissions were calculated using the URBEMIS 2007 emissions inventory model, which multiplies the estimate of daily vehicle miles travelled (VMT) by applicable EMFAC2007 emissions factors. The URBEMIS 2007 model output and worksheets for calculating regional operational daily emissions are provided in the air quality appendix. As shown in the following table, while the revised project's regional emissions would exceed most regional SCAQMD thresholds, emissions are expected to remain below emission levels previously calculated for the 2002 Master Facilities Plan. Therefore, regional operational emissions would not result in more severe significant long-term regional air quality impacts.

^b These localized thresholds were taken from tables provided in the SCAQMD LST methodology guidance document, which are based on the following: 1) The project site is located in SCAQMD Source Receptor Area No. 6, 2) sensitive receptors are located within 50 meters of construction activity, and 3) the maximum site area to be disturbed is 5 acres.

Issues		Less-than- Significant Impact with	Less-than-	
	Potentially	Mitigation	Significant	
	Significant	Incorporated	Impact	No Impact

Table 8. Forecast of Regional Operational Emissions

	(Criteria Pollutant Emissions (pounds per day)					
	ROC	NO _X	СО	so _x	PM10	PM2.5	
Pierce College							
2010 Master Plan	117	99	1,379	1	83	76	
2002 Master Plan	170	108	1,506	1	90	83	
SCAQMD Regional Emissions Threshold (lbs/day)	55	55	550	150	150	55	
Exceed Threshold?	Yes	Yes	Yes	No	No	Yes	
More Severe Significant Impact?	No	No	No	No	No	No	

^a Mobile emissions calculated using the URBEMIS 2007 emissions model. Model output sheets are provided in the air quality appendix.

Source: ICF Jones & Stokes, 2009.

Local Operational Impacts

Within an urban setting, vehicle exhaust is the primary source of CO. Consequently, the highest CO concentrations are generally found close to congested intersections. Under typical meteorological conditions, CO concentrations tend to decrease as the distance from the emissions source (i.e., congested intersection) increases. For purposes of providing a conservative worst-case impact analysis, CO concentrations are typically analyzed at congested intersections, because if impacts are less than significant close to the congested intersections, impacts will also be less than significant at more distant locations.

Project traffic during the operational phase would have the potential to create local CO impacts. SCAQMD recommends a hot-spot evaluation of potential local CO impacts when volume-to-capacity ratios are increased by 2 percent at intersections with a level of service (LOS) of C or worse. Given these criteria and information provided in the traffic impact study prepared by Fehr and Peers (2010), two intersections were selected for analysis.

Local area CO concentrations were projected using the CALINE 4 traffic pollutant dispersion model. The analysis of CO impacts followed the protocol recommended by the California Department of Transportation (Caltrans), published as the *Transportation Project-level Carbon Monoxide Protocol* (Caltrans 1997). It is also consistent with SCAQMD's CO modeling protocol procedures, with all four corners of each intersection analyzed to determine whether project development would result in a CO concentration that exceeds federal or state CO standards.

The project's AM and PM 1- and 8-hour CO levels for project year 2015 CO concentrations are presented in the table below. As shown therein, the proposed 2010 Master Plan Update would not have a significant impact related to 1- or 8-hour local CO concentrations from mobile-source emissions.

Because significant impacts would not occur at those intersections with the highest traffic volumes, which are located adjacent to sensitive receptors, no significant impacts are anticipated to occur at any other location in the study area. This is because the conditions that yield CO hot spots would not be any worse than those that would occur at the analyzed intersections. Consequently, sensitive receptors included in this analysis would not be significantly affected by the CO emissions from the net increase in traffic that would occur under the project. Because the project would not cause an exceedance or exacerbate an existing exceedance of an ambient air quality standard, the project's localized operational air quality impacts would be less than significant. No mitigation measures are necessary.

^b Emissions due to project-related electricity generation based on guidance provided in SCAQMD's *CEQA Air Quality Handbook*. Worksheets are provided in the air quality appendix.

Issues	5	Less-than- Significant Impact with	Less-than-	
	Potentially	Mitigation	Significant	
	Significant	Incorporated	Impact	No Impact

Table 9. Local Area Carbon Monoxide Dispersion Analysis

Intersection	Peak Period ^a	Maximum 1-hour 2015 Base Concentration (ppm) ^b	Maximum 1-hour 2015 with-Project Concentration (ppm) ^c	Significant 1-hour Concentration Impact? ^d	Maximum 8-hour 2015 Base Concentration (ppm) ^e	Maximum 8-hour 2015 with-Project Concentration (ppm) ^f	Significant 8-hour Concentration Impact? ^d
De Soto at	AM	8.0	8.0	No	6.5	6.5	No
Victory	PM	8.3	8.3	No	6.7	6.7	No
Winnetka at	AM	7.5	7.6	No	6.1	6.2	No
U.S. 101 Eastbound Ramp	PM	7.5	7.5	No	6.1	6.1	No

Notes:

CALINE4 dispersion model output sheets and EMFAC2007 emissions factors are provided in the air quality appendix. ppm = parts per million

Source: ICF Jones & Stokes, 2009.

With respect to the revised project's on-site mass emissions, the following table shows that on-site operational-period emissions would be below SCAQMD's LSTs. Impacts from emissions of these criteria pollutants would be less than significant.

Table 10. Forecast of Localized Operational Emissions

	Criteria Pollutant Emissions (pounds per day)					
	ROC	NO _X	СО	so _x	PM10	PM2.5
On-site Area-Source Emissions	2	3	4	<1	<1	<1
SCAQMD Localized Significance Threshold (lbs/day) ^a	_	212	1,510	_	9	2
Exceed Threshold?	No	No	No	No	No	No

^a These localized thresholds were taken from tables provided in the SCAQMD LST methodology guidance document, which is based on the following: 1) The project site is located in SCAQMD Source Receptor Area No. 6, 2) sensitive receptors are located within 50 meters of the project, and 3) the maximum site to be disturbed is 5 acres.

URBEMIS 2007 outputs are provided in the air quality appendix.

Source: ICF Jones & Stokes, 2009.

^a Peak-hour traffic volumes are based on the traffic impact analysis prepared for the project by Fehr and Peers (2010).

^b SCAQMD 2015 1-hour ambient background concentration (6.6 ppm) + 2015 base traffic CO 1-hour contribution.

^c SCAQMD 2015 1-hour ambient background concentration (6.6 ppm) + 2015 with-project traffic CO 1-hour contribution.

^d The state standard for the 1-hour average CO concentration is 20 ppm, and the 8-hour average concentration is 9.0 ppm.

^e SCAQMD 2015 8-hour ambient background concentration (5.5 ppm) + 2015 base traffic CO 8-hour contribution.

^f SCAQMD 2015 8-hour ambient background concentration (5.5 ppm) + 2015 with-project traffic CO 8-hour contribution.

	Potentially Significant	Impact with Mitigation Incorporated	Less-than- Significant Impact	No Impact	
c) Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is non-attainment under an applicable federal or state ambient air quality standard (including releasing emissions that exceed quantitative thresholds for ozone precursors)?					
Less-than-Significant Impact. SCAQMD's approach for asset forecasts of attainment of ambient air quality standards, in ac state Clean Air Acts. As discussed earlier in response 3(a), consistent with the AQMP, which is intended to bring the Basin the mass regional emissions calculated for the proposed 2010 impacts. As such, the revised project would not result in a measures are required.	cordance wit the proposed into attainme Master Plan	h the require I 2010 Maste ent for all crite Update in res	ments of the er Plan Upda eria pollutants sponse 3(b) s	federal and ate would be a. In addition, show no new	
d) Expose sensitive receptors to substantial pollutant concentrations?		\boxtimes			
Less-than-Significant Impact with Mitigation Incorporated. As described in response 3(b), above, mitigated construction and operation of the proposed 2010 Master Plan Update would not result in any substantial localized air pollution impacts and therefore would not expose any nearby sensitive receptors to substantial pollutant concentrations.					
e) Create objectionable odors affecting a substantial number of people?					
Less-than-Significant Impact. According to the SCAQMD CEQA Air Quality Handbook, land uses associated with odor complaints typically include agricultural uses, wastewater treatment plants, food processing plants, chemical plants, composting sites, refineries, landfills, dairies, and fiberglass molding facilities (SCAQMD 1993). The proposed 2010 Master Plan Update does not include any uses identified by the SCAQMD as being associated with odors. Therefore, it would not be expected to produce objectionable odors. Potential odor sources during construction include asphalt paving material and architectural coatings and solvents. SCAQMD Rules 1108 and 1113 limit the amount of volatile organic compounds from cutback asphalt and architectural coatings and solvents, respectively. In compliance with SCAQMD rules, no construction activities or materials would be proposed that would create a significant level of objectionable odor. As such, potential impacts during short-term construction would be less than significant.					
4. BIOLOGICAL RESOURCES. Would the project:					
a) Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special-status species in local or regional plans, policies, or regulations or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?		\boxtimes			
Long then Cinnificant Imment with Mitingtian Income and all	سنت اممامان	our of Diame	- Callaga		

Less-than-

Less-than-Significant Impact with Mitigation Incorporated. Biological surveys of Pierce College were conducted in 2002 during the preparation of the 2002 FEIR. In addition, an updated survey was conducted by an ICF Jones & Stokes biologist on August 3, 2009. While not observed during the 2009 survey, large numbers of Canada geese are known to feed and roost (rest) in the agricultural fields in the western portion of the campus during the winter months (generally November to March). Also, while not included on any list of sensitive species, Canada geese are considered to be a locally sensitive species because of the lack of feeding and resting habitat for this species in coastal southern California.

Issues

Issues		Less-than- Significant Impact with	Less-than-	
	Potentially	Mitigation	Significant	
	Significant	Incorporated	Impact	No Impact

None of the projects included in the 2002 Master Plan that were proposed for the agricultural fields in the western portion of the campus were constructed (see Table 1 for status of 2002 projects). The 2010 Master Plan Update does not propose any substantial projects in the agricultural fields; therefore, the potential to affect Canada geese is limited. However, should any construction activities occur in the agricultural fields, the mitigation measure proposed in the 2002 EIR, and included below, would be implemented. Implementation of mitigation measure BR-1 would mitigate significant impacts (through habitat modifications) to the same level of less than significant.

2002 EIR Mitigation Measures

- To avoid significant impacts on Canada geese, a locally sensitive species, Pierce College shall attempt to avoid construction activities in the agricultural portions of the campus during the winter months when geese are present. If construction activities in agricultural areas during winter cannot be avoided, then several months prior to the scheduled initiation of construction activities, Pierce College shall plant low-growing herbaceous crops (alfalfa, grains) or wild grass favored by Canada geese in portions of the agricultural fields that would not be affected by construction activities to provide alternative feeding habitat for the geese. Human disturbance in the enhanced area shall be prohibited until the geese migrate from the area or until construction activities in the agricultural fields are complete. In addition, because the project includes permanent removal of some feeding and roosting habitat for geese, a mitigation plan shall be developed to minimize permanent impacts on the Canada geese population at the campus. The plan shall be developed by campus biology instructors who are familiar with the areas on campus used by Canada geese in conjunction with experts who are familiar with successful management of the wintering geese populations at Sepulveda Basin, the Salton Sea, and/or Central Valley. The plan shall include the following measures:
 - An evaluation of the extent of use by geese of agricultural areas that are to be removed from agricultural use as part of the master plan. The number of acres to be enhanced for geese shall be directly proportional on a 1:1 basis to the number of acres to be removed from agricultural production. Such acreage will have been used by geese during one or more of the past 5 years.
 - An evaluation of the remaining agricultural areas on campus that would be appropriate to enhance for roosting (resting) and foraging for geese. The enhancement areas shall be appropriate for maintaining limited human disturbance, for planting crops known to be used in other areas of California for geese foraging (rye grass, corn, sorghum, millet), and for providing a sufficient take-off area for geese so they don't feel boxed in.
 - A planting plan that specifies the timing of planting, pre-planting, and post-planting methods (e.g., harvesting crops to prepare them for geese foraging) to maximize use by geese; methods for limiting human disturbance; and methods for limiting encroachment by geese into areas outside the enhancement site where they may suffer mortality because of campus traffic or other campus uses.
 - Monitoring and reporting methods so that the success of the enhancement can be
 measured for a minimum of 5 years following the first planting. Monitoring shall be
 conducted a minimum of once monthly during each winter, and a monitoring report
 shall be prepared once annually. Population monitoring shall take into account the
 wide fluctuations in the geese population on campus that has occurred over the last
 several decades.

	Significant Impact with	Less-than-	
Potentiall Significar	Ily Mitigation	Significant Impact	No Impact

As with the 2002 Master Plan, the facilities proposed as part of the proposed 2010 Master Plan Update would result in the removal of trees and other vegetation that could support nesting birds and raptors protected by the federal Migratory Bird Treaty Act (MBTA) and/or California Fish and Game Code. Direct impacts on active nests would be considered a significant impact on special-status species. Implementation of mitigation measure BR-2, identified in the EIR prepared for the 2002 Master Plan (and provided below), would mitigate this impact to the same level of less than significant.

BR-2 To avoid violations of the MBTA or California Fish and Game Code Section 3503, Pierce College shall attempt to limit grubbing and the removal of trees and buildings during the bird breeding season (approximately March 1 to September 1 [as early as February 1 for raptors]). If the bird breeding season cannot be avoided, Pierce College shall retain a qualified ornithologist to initiate surveys of the construction zone 30 days prior to the initiation of construction and weekly thereafter, with the last survey not more than 3 days prior to the initiation of construction, to minimize the potential for nesting following the survey and prior to construction. If the ornithologist detects any occupied nest or nests of native birds within the construction zone, Pierce College will conspicuously flag off the area(s) supporting bird nests, providing a minimum buffer of 300 feet between the nests and limits of construction (500 feet for raptors). The construction crew will be instructed to avoid any activities in this zone until the bird nests are no longer occupied, per a subsequent survey by the ornithologist.

No new impacts or mitigation measures are proposed under the 2010 Master Plan Update. The findings of the 2002 EIR remain valid.

b) Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, regulations or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?				
--	--	--	--	--

No Impact. ICF Jones & Stokes conducted a field inspection on August 3, 2009, to identify any changes in the existing environmental setting compared with that of the 2002 FEIR. No changes to the environmental setting were observed. The proposed 2010 Master Plan Update does not include any improvements or development within Canyon de Lana, which is the only area on the project site that was found during the 2009 survey to support riparian habitat or other sensitive natural communities. Components of the proposed 2010 Master Plan Update would remove only agricultural uses, including trees and shrubs. Therefore, no impacts on riparian habitat or sensitive natural communities would occur as a result on the proposed 2010 Master Plan Update.

c) Have a substantial adverse effect on federally		
protected wetlands as defined by Section 404 of the		
Clean Water Act (including marsh, vernal pool, coastal,		
etc.) through direct removal, filling, hydrological	 	
interruption, or other means?		

Less-than-Significant Impact. The 2002 EIR stated that the pond renovation work in the Canyon de Lana area may result in a significant impact if proposed renovation required the discharge of fill material into the streambed of Canyon de Lana. Pierce College will obtain an individual permit under Section 404 of the Clean Water Act if needed. A Streambed Alteration Agreement will be obtained by Pierce College if activities associated with pond renovation result in a violation of Section 1600 of the Fish and Game Code or significant impacts on protected wetlands. The 2002 EIR included mitigation measure BR-4 to avoid violations of wetland laws. The mitigation required Pierce College to retain a qualified wetland specialist to conduct wetland delineations as necessary.

Issues	Potentially Significant	Less-than- Significant Impact with Mitigation Incorporated	Less-than- Significant Impact	No Impact		
The proposed 2010 Master Plan Update does not include any Lana, which is the only area on the subject property that was a have the potential to be regulated under the Clean Water approximately 1,000 feet northwest of the Canyon de Lana (including from dust, noise, or runoff) would be low. Component not result in significant impacts on federally protected wetlands, and the component of the compo	ound during Act. The nearea. Therefets of the property	the 2009 sur earest const ore, the pote posed 2010 N	rvey to support ruction proje ential for indi Master Plan L	ort areas that ct would be rect impacts Jpdate would		
d) Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident migratory wildlife corridors or impede the use of native wildlife nursery sites?			\boxtimes			
Less-than-Significant Impact. The eastern portion of the Pierce College campus is primarily developed with educational and recreational facilities and does not serve as a wildlife corridor. The western portion of the campus is currently sparsely developed and supports open agricultural fields, grasslands, and Canyon de Lana. This area would provide a local corridor for wildlife on the campus; however, the campus is surrounded by development and therefore does not provide a connected corridor for wildlife to undeveloped areas off site. Furthermore, the limited amount of proposed development within the western portion of the campus would not interfere substantially with the movement of wildlife within or through the campus. Native wildlife nursery sites do not occur within or immediately adjacent to the subject property; therefore, their use would not be impeded as a result of the proposed 2010 Master Plan Update. This would be considered a less-than-significant impact.						
e) Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?						
Less-than-Significant Impact. The project site is located in the City of Los Angeles. The city's Protected Tree Ordinance (Los Angeles Municipal Code Section 46.00, Ordinance No. 153,478) regulates the relocation or removal of all native oak trees (excluding scrub oak), California black walnut trees, California sycamore trees, and California bay trees of at least 4 inches in diameter at breast height (DBH). These tree species are defined as "protected" by the City of Los Angeles. The ordinance prohibits, without a permit, the removal of any regulated protected tree, including "acts that inflict damage upon root systems or other parts of the tree," and requires that all regulated protected trees that are removed be replaced on at least a 2:1 basis with trees that are of a protected variety.						
Native trees, including oaks and sycamores, occur within the Ca in the construction area. Construction of facilities proposed un anticipated to result in impacts on trees protected by the cit related to local policies and ordinances protecting biological resolution.	der the prop y's Protected	osed 2010 M I Tree Ordin	laster Plan L ance. Theref	Jpdate is not		
f) Conflict with the provisions of an adopted habitat conservation plan, natural conservation community plan, other approved local, regional, or state habitat conservation plan?						

No Impact. The project site is not located within the jurisdiction of any approved habitat conservation plan or natural community conservation plan. No impact is anticipated to occur.

issues	Potentially Significant	Significant Impact with Mitigation Incorporated	Less-than- Significant Impact	No Impact
5. CULTURAL RESOURCES. Would the project:				
a) Cause a substantial adverse change in the significance of a historical resource as defined in Section 15064.5?				

Locc-than-

Potentially Significant (as in the 2002 FEIR but less severe). An intensive-level historical resources survey of Pierce College was conducted in 2002 during preparation of the 2002 FEIR. After a review of the survey and the proposed 2010 Master Plan Update, it was determined that adverse changes related to the significance of historical resources would not be expected to occur as a result of the update. The proposed 2010 Master Plan Update does not include any substantial level of remodeling or demolition of existing key campus buildings (i.e., the permanent academic buildings within the core of the campus, extending east from Mason Street to include the Horticulture Complex). Instead, it would retain and renovate existing classroom buildings, use landscape design and other non-intrusive means to strengthen pedestrian circulation through the campus core, and locate new buildings, student activity spaces, and parking facilities where no historical resources are located. New buildings that are nearing completion, as well as proposed future buildings, are designed in a Mediterranean style with light-colored stucco exterior walls and terra cotta tile roofs. This design approach is compatible with the College's surviving Spanish Revival/Mission Revival buildings. For this reason, it is unlikely that the revised design would introduce new, incompatible atmospheric design elements into the historic setting of the historical resources.

One listed State Historical Landmark has been identified on the Pierce College campus. Known as Old Trapper's Lodge, this historical resource (State Historical Landmark No. 939) is a folk art sculpture installation that was created by artist John Ehn (1897–1981). It is located approximately 50 feet west of the agricultural education building and just east of the equestrian center in a vest pocket-sized park. However, the proposed 2010 Master Plan Update would not affect Old Trapper's Lodge. It neither calls for relocation, demolition, or disassembly and reinstallation of the features that make up Old Trapper's Lodge nor adverse atmospheric changes to the setting.

In addition to the referenced historical resource, 12 other buildings are identified as potential historical resources in the 2002 FEIR. These consist of a small number of key campus buildings that survived from the first three years of the College's existence (1947-1950): Exposition Hall (the Quonset hut in which the College's first classes and student assemblies were held in 1947), the business office/student store building, and the 10 faculty office cottages (located between the student store and Stadium Way). The business office/student store building and office cottages were designed by Los Angeles architect Albert B. Gardner in the Spanish Revival/Mission Revival style. The 2002 EIR describes Exposition Hall as "not architecturally noteworthy," but it may be historically significant because of its close association with key school-wide academic activities during the first year of the College's existence. A finding in the 2002 FEIR states that in the event that the College chooses to demolish the Exposition Hall Quonset hut, a significant and unavoidable impact on a historic resource will result. The business office/student store building was largely demolished as part of the implementation of the 2002 Master Plan. The proposed 2010 Master Plan Update does not call for the demolition, alteration, or relocation of the faculty cottages; however, construction of the new 70,000-square-foot Green Technologies Building is proposed on the site of the Facilities Plant yard, which is where three of the campus' known surviving Quonset hut buildings are located. Demolition of all three Quonset huts is being proposed to accommodate the revised project. During February 2010, with the assistance of the College, intensive research by ICF authenticated the Exposition Hall Quonset hut, its current location within the Facilities Plant yard, its original location (circa 1947–1952), as well as the building's condition and degree of alteration. The building was then visited and photo-documented so that its current condition and setting could be visually assessed. Because the location of Exposition Hall within the Facilities Plant compound has been documented and all the structures at that location are proposed for demolition, the revised project would result in a significantly adverse impact on this resource if pertinent mitigation measures are not established and implemented to ensure its preservation.

The integrity of Exposition Hall as a historic resource and the ability of the building to convey its historical significance were assessed using the National Park Service criteria (found in National Register Bulletin 15). Given the aforementioned criteria, Exposition Hall was found to retain essential physical features that convey its historical identity (National Register Bulletin 15, Section VII). In addition, moving the building from its

Issues		Less-than- Significant		
		Impact with	Less-than-	
	Potentially	Mitigation	Significant	
	Significant	Incorporated	Impact	No Impact

original location on campus to its current location was found not to have significantly impaired its ability to convey the historical associations for which it is significant (National Register Bulletin 15, Section VII, Criteria Consideration B – Moved Buildings).

The location of the Exposition Hall Quonset hut has been authenticated within the Facilities Plant compound. The existing buildings at that location are slated for demolition for the proposed Green Technologies Building. Although altered and moved, demolition of Exposition Hall would nonetheless be a significant adverse impact under CEQA. because the building retains a sufficient degree of physical design characteristics to convey its historic identity.

To address potential impacts on Exposition Hall, the mitigation measure presented below is proposed under the 2010 Master Plan Update.

The Exposition Hall Quonset hut shall be moved to a new location on campus where its HR-1 original association with the College's early agricultural/animal husbandry education curriculum can best be interpreted. Appropriate potential locations include the Agricultural Education complex, the Equestrian Center, or the agricultural fields south of El Rancho Drive in vicinity of the Feed Mill Quonset hut. Prior to relocating Exposition Hall, the College shall prepare a preservation plan to ensure the preservation and maintenance of the building. The preservation plan shall describe the history of the resource and its character-defining design/structural features, document its current condition and the feasibility of moving the building, and outline what actions must be taken, consistent with the Secretary of the Interior's Standards, to competently relocate and rehabilitate the building. It shall also include an interpretive plan component that will provide the step-bystep strategy the College will use for interpreting the history of the resource for the educational benefit of Pierce College students. Plan approval for the Green Technologies Building by the Office of the State Architect shall be made contingent upon the completion of the preservation plan and its adoption by the LACCD Board of Trustees.

Consistent with the findings in the 2002 FEIR, were the College to propose demolition of the Exposition Hall Quonset hut, or were it to propose substantial alteration inconsistent with the building's preservation plan, that action would result in a significant and unavoidable effect on a historical resource under CEQA.

b) Cause a substantial adverse change in the	 	
significance of an archaeological resource pursuant to		
Section 15064.5?	 	 -

Less-than-Significant Impact with Mitigation Incorporated. An intensive archaeological resources survey of Pierce College was conducted in 2002 during preparation of the 2002 FEIR. No archaeological resources were identified during that survey. However, areas of sensitivity were defined, one in the southwestern corner of the College at Canyon de Lana where a water source was found and the other, a nature trail area, in the southeastern corner of the College where prehistoric Native American artifacts have reportedly been found in the past (Horne 2002). Pierce College indicated that, according to its records, the water source in Canyon de Lana is not naturally occurring. The proposed 2009 Master Plan Update would reduce impacts in areas of sensitivity through the elimination of several projects that lie outside of the developed campus core. No projects are scheduled for Canyon de Lana; however, the horticulture/animal science facility is still planned for the southeastern corner of the College under the proposed 2009 Master Plan Update.

On July 29, 2009, an archaeological field inspection of Pierce College was conducted by ICF Jones & Stokes personnel. No cultural resources were observed within the project area during this effort. Conditions described in the 2002 survey report were essentially the same in 2009. For this reason, the same mitigation measures as specified in the 2002 EIR would reduce impacts associated with the proposed 2009 Master Plan Update to a less-than-significant level. These mitigation measures are listed below.

Issues		Less-than- Significant		
		Impact with	Less-than-	
	Potentially	Mitigation	Significant	
	Significant	Incorporated	Impact	No Impact

2002 EIR Mitigation Measures

- AR-1 If buried cultural resources are discovered during construction, all work must be halted in the vicinity of the archaeological discovery until a qualified archaeologist can visit the site of discovery and assess the significance of the archaeological resource. In areas of archaeological sensitivity, such as in the vicinity of the water sources in the Canyon de Lana and the Chalk Hills in the southeastern corner of the campus, a certified archaeologist and a culturally affiliated Native American with knowledge of cultural resources shall monitor project-related ground-disturbing activities. Specifically, monitoring is recommended during construction of the horticulture/animal science and maintenance and operations facility.
- **AR-2** Provisions for the disposition of recovered prehistoric artifacts shall be made in consultation with culturally affiliated Native Americans.
- AR-3 In the event of an accidental discovery of any human remains, the procedures specified in Health and Safety Code Section 7050.5, CEQA Section 15064.5 (e), and Public Resources Code Section 5097.98 shall be implemented.

c) Directly or indirectly destroy a unique	M	
paleontological resource or site or unique geologic feature?		

Less-than-Significant Impact with Mitigation Incorporated. Pierce College is situated on the edge of the Chalk Hills in the western San Fernando Valley. Flat portions of the campus are underlain by Quaternary alluvial fan deposits and scattered areas of artificial fill. The top few feet of these alluvial fan deposits are unlikely to contain significant vertebrate fossils, but the underlying alluvium of late Pleistocene age is known to contain vertebrate fossils. The hills in the southern part of the campus are made up of Late Miocene age Modelo Formation, which is composed of marine sedimentary rock that is likely to contain significant fossil resources. This bedrock is exposed at or near the ground surface.

A records search for paleontological resources was conducted in 2002 for the 2002 FEIR. This search indicated that fossil resources had not been identified on the Pierce College campus, but resources had been found in the same geologic formations nearby. Conditions at the College campus have not changed; therefore, the same mitigation measures specified in the 2002 EIR would reduce impacts associated with the proposed 2010 Master Plan Update to a less-than-significant level. These mitigation measures are listed below.

2002 EIR Mitigation Measures

- PR-1 The monitoring of excavation in areas identified as likely to contain paleontological resources shall be conducted by a qualified paleontological monitor. The monitor shall be equipped to salvage fossils and samples of sediments as they are unearthed to avoid construction delays. The monitor shall be empowered to temporarily halt or divert equipment to allow removal of abundant or large specimens. Monitoring may be reduced if the potentially fossiliferous units, previously described, are not present or, if present, are determined by qualified paleontological personnel to have a low potential to contain fossil resources.
- **PR-2** Recovered specimens shall be prepared to a point of identification and permanent preservation, including the washing of sediments to recover small invertebrates and vertebrates.
- **PR-3** Specimens shall be curated into a professional, accredited museum repository with permanent retrievable storage.
- **PR-4** A report of findings, with an appended itemized inventory of specimens, shall be prepared. The report and inventory, when submitted to Pierce College, would signify completion of the program to mitigate impacts on paleontological resources.

Issues	Potentially Significant	Less-than- Significant Impact with Mitigation Incorporated	Less-than- Significant Impact	No Impact
d) Disturb any human remains, including those interred outside of formal cemeteries?				
Less-than-Significant. Impact. No human remains or ceme campus. An archaeological resources survey of Pierce Coll were found. If human remains are discovered during constrepresentatives would be notified in accordance with Public Code Section 7050.5, and CEQA Section 15064.5(e), as specimpact would occur.	ege was cond uction, the co Resources Co	ucted in 2002 roner and deaded de Section 50	2, and no hu signated Nat)97.98, Healt	man remain ive America h and Safet
6. GEOLOGY AND SOILS. Would the project:				
a) Expose people or structures to potential substarting injury, or death involving:	tial adverse e	ffects, includ	ling the risk	of loss,
i) Rupture of a known earthquake fault, as delineated on the most recent Alquist-Priolo Earthquake Fault Zoning Map issued by the State Geologist for the area or based on other substantial evidence of a known fault? Refer to Division of Mines and Geology Special Publication 42.			\boxtimes	
Earthquake Fault Zone and that no known active faults crovicinity of the project area. ⁶ With respect to the proposed 20 have not changed; the impacts considered in the 2002 FE	ss through the 10 Master Pla IR regarding	e project area n Update, cor ground ruptui	a or within the nditions on the re within the	ne immediate e project site project area
Earthquake Fault Zone and that no known active faults crovicinity of the project area. ⁶ With respect to the proposed 20 have not changed; the impacts considered in the 2002 FE	ss through the 10 Master Pla IR regarding	e project area n Update, cor ground ruptui	a or within the nditions on the re within the	ne immediat e project sit project are
Earthquake Fault Zone and that no known active faults crovicinity of the project area. With respect to the proposed 20 have not changed; the impacts considered in the 2002 FE remain the same. Therefore, primary ground rupture is not an ii) Strong seismic ground shaking? Less-than-Significant Impact. The 2002 FEIR found the associated with earthquakes on faults of both the San Andrea itself is located in the vicinity of many major active faults, increased faults. These faults are considered potentially signound motion hazards are not unusual for the San Fernance hazard would represent a less-than-significant impact proapplicable provisions of the State of California, Division of the 1998 California Building Code (CBC). The CBC is based on regulations concerning proper earthquake design and engine	ss through the 10 Master Pla IR regarding icipated, and in the project s and Transvelluding the No nificant source o Valley area. Vided that deep State Architche 1997 Uniformatical control of the 1997 Uniformat	e project area n Update, con ground ruptur mpacts would be surse Ranges frethridge thrust es of ground It was found sign and contect, and the orm Building C	a or within the ditions on the within the be less than be less to grow ault systems. Santa Susa shaking. Ho in the 2002 struction conguidelines secode (UBC) a	e immediate project site project are significant. Fund shaking The camputana, and Salwever, these EIR that this forms to a set forth in the and sets forth.
Less-than-Significant Impact. The 2002 FIER found that the Earthquake Fault Zone and that no known active faults crovicinity of the project area. With respect to the proposed 20 have not changed; the impacts considered in the 2002 Fieremain the same. Therefore, primary ground rupture is not an ii) Strong seismic ground shaking? Less-than-Significant Impact. The 2002 FEIR found the associated with earthquakes on faults of both the San Andrea itself is located in the vicinity of many major active faults, in Fernando faults. These faults are considered potentially sigground motion hazards are not unusual for the San Fernand hazard would represent a less-than-significant impact proapplicable provisions of the State of California, Division of the 1998 California Building Code (CBC). The CBC is based on regulations concerning proper earthquake design and engin UBC earthquake design criteria for Seismic Zone 4. Impacts related to seismic ground shaking would remain the states described in the 2002 FEIR. The proposed 2010 Mast construction guidelines, as required by the previous EIR, to remain less than significant.	ss through the 10 Master Pla IR regarding icipated, and in the project s and Transversuding the No nificant source o Valley area wided that detected the 1997 Unificating. Construction of the 1997 Unificating are under the property of the property of the 1997 Unificating of the 1997 Unificating of the 1997 Unificating of the property of the 1997 Unificating of the property of the project of the projec	e project area of Update, con ground ruptur mpacts would be surse Ranges for thridge thrust es of ground It was found it was found etct, and the orm Building Cuction would exproposed 20 ex would also in the context of the context o	a or within the ditions on the ditions of the ditio	ne immediate e project site project are significant. Fund shaking The camputana, and Sawever, these EIR that this forms to a set forth in the and sets forth in the to the 199 an Update a ser design and

Less-than-Significant Impact. Liquefaction is a phenomenon in which saturated granular sediments temporarily lose their shear strength during periods of strong earthquake-induced ground shaking. The susceptibility of a site to liquefaction is a function of the depth, density, and water content of granular sediments and the magnitude and frequency of earthquakes in the surrounding region. Saturated, unconsolidated silt, sand, and silty sand within

⁶ California Division of Mines and Geology. 2001. *Seismic Hazard Zone Report for the Canoga 7.5-Minute Quadrangle, Los Angeles County, California.* Seismic Hazard Zone Report 007.

Issues	Potentially Significant	Less-than- Significant Impact with Mitigation Incorporated	Less-than- Significant Impact	No Impact		
50 feet of the ground surface are most susceptible to liquefaction. Liquefaction-related phenomena may include lateral spreading, ground oscillation, loss of bearing strength, and subsidence. Lateral spreading comprises the movement of surficial blocks of sediment due to liquefaction and commonly occurs on gentle slopes of 0.3 to 3 degrees.						
The 2002 FEIR found that low-lying portions of the project area are within a California Division of Mines and Geology (CDMG) Seismic Hazard Mapping Program liquefaction hazard zone. Additionally, is was found that although no historical liquefaction had been reported in the Canoga quadrangle, there was evidence of laters spreading in the Northridge and Reseda areas after the Northridge earthquake. Furthermore, localized areas a shallow groundwater and unconsolidated sediments may exist within the project site and could lead to liquefaction phenomena. However, it was concluded that much of the campus is underlain by bedrock, and the remainder of the campus is underlain by fine-grained alluvial/colluvial material that would not be susceptible to liquefaction phenomena. Consequently, liquefaction-related phenomena would not pose a significant problem.						
With respect to the proposed 2010 Master Plan Update, impacts identified under the 2002 FEIR. As such, impacts would remain I			emain the sa	me as those		
iv) Landslides?				\boxtimes		
No Impact. The 2002 FEIR found that impacts from landslides Update site is not located in an area susceptible to landslide has would not change from that described in the 2002 EIR, it is cooccur under the proposed 2010 Master Plan Update. No impact w	zards. Becaus ncluded that	se the locatio	n proposed fo	or the project		
b) Result in substantial soil erosion or the loss of topsoil?				\boxtimes		
No Impact. The 2002 FEIR found that impacts from soil erosion or the loss of topsoil would not occur because the area is fully developed. Because the proposed 2010 Master Plan Update would occupy the same project site, it is concluded that no new impacts would occur from soil erosion or the loss of topsoil. Additionally, the proposed 2010 Master Plan Update would reduce the amount of building square footage proposed. As such, impacts would be less than those assumed under the 2002 Master Plan. There would be no new impacts.						
c) Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off-site landslide, lateral spreading, subsidence, liquefaction or collapse?		\boxtimes				
Less-than-Significant Impact with Mitigation Incorporated. The 2002 FEIR identified corrosion, compaction, and expansion as the soil characteristics that could have significant impacts on the design of new buildings and facilities. Corrosive soils could damage buried utilities and foundations. Loose alluvial soils and undocumented fill may be subject to compaction or settlement due to changes in foundation loads or in soil moisture content, which could result from rainfall, landscape irrigation, utility leakage, roof drainage, and/or perched groundwater. Potential impacts are related to unacceptable settlement or heave for structures, concrete slabs supported on grade, and pavement supported on the aforementioned types of soil. The 2002 FEIR provided that all earthwork and grading would meet the code requirements of the State of California and follow the recommendations of the geotechnical report created for the project. Further mitigation measures were provided to reduce impacts to less-than-significant levels. With respect to the proposed 2010 Master Plan Update, the impact from unsuitable soils would pose a less than-significant impact provided that the same appropriate mitigation measures are implemented during design and construction. Impacts would remain less than significant with mitigation incorporated.						

⁷ California Division of Mines and Geology. 1998. Seismic Hazard Zone Map, Canoga Quadrangle.

Issues	Potentially	Less-than- Significant Impact with Mitigation	Less-than- Significant	
	Significant	Incorporated	Impact	No Impact

2002 EIR Mitigation Measures

The six mitigation measures listed below from the 2002 FEIR would reduce impacts anticipated under the proposed 2010 Master Plan Update to a less-than-significant level.

Construction Mitigation

To minimize hazards to construction workers from unstable temporary slopes, the following measures shall be implemented by the construction contractor(s):

- **GE-1** All earthwork and grading shall meet the requirements of State of California codes and shall be performed in accordance with the recommendations in the geotechnical investigation conducted for each proposed project at the Pierce College campus, and
- **GE-2** All excavation and shoring systems shall meet the minimum requirements of the Occupational Safety and Health Administration (OSHA).

Operational Mitigation

Because of the potential for strong seismic ground shaking, unsuitable soils, and soil liquefaction, the following mitigation measures shall be implemented:

2002 EIR Mitigation Measures

- **GS-1** Geotechnical investigations shall be performed by qualified licensed professionals before final design of any structures, and recommendations provided in these reports should be implemented, as appropriate;
- **GS-2 Ground Shaking.** Design and construction of structures for the revised project shall conform to all applicable provisions of the State of California, Division of the State Architect, and the guidelines set forth in the 1998 California Building Code. The CBC is based on the 1997 Uniform Building Code and sets forth regulations concerning proper earthquake design and engineering. In addition, design and construction shall conform to the 1997 UBC earthquake design criteria for Seismic Zone 4.
- **GS-3 Liquefaction.** If liquefiable soils are identified by geotechnical investigations for project structures, then mitigation should be implemented. Appropriate mitigation, which could include the use of piles, deep foundations, dynamic densification, ground improvement, grouting, or removal of suspect soils, is dependent on site-specific conditions, which should be identified by the geotechnical investigation.
- GS-4 Unsuitable Soil Conditions. The geotechnical investigation of proposed facilities should fully characterize the presence and extent of corrosive, expansive, or loose compactable soil. After consideration of the collected data, appropriate mitigation can be designed. Mitigation options could include the following: removal of unsuitable subgrade soils and replacement with engineered fill, installation of cathodic protection systems to protect buried metal utilities, use of coated or nonmetallic (i.e., concrete or PVC) pipes that are not susceptible to corrosion, construction of foundations using sulfate-resistant concrete, support of structures on deep-pile foundation systems, densification of compactable subgrade soils with in situ techniques, and placement of moisture barriers above and around expansive subgrade soils to help prevent variations in soil moisture content.

Issues	Potentially Significant	Less-than- Significant Impact with Mitigation Incorporated	Less-than- Significant Impact	No Impact
d) Be located on expansive soil, as defined in Table 18-1-B of the Uniform Building Code (1994), creating substantial risks to life or property?				

Less-than-Significant Impact with Mitigation Incorporated. The 2002 FEIR found that the expansion potential of soil within the project area could vary from very low for soils in sandy materials to very high for soils on lean clay units. The alluvium in several areas on campus is moderately expansive. Expansive soils are characterized by their ability to undergo significant volume change (shrink and swell) due to variations in soil moisture content. Potential impacts are related to unacceptable settlement or heave for structures, concrete slabs supported on grade, and pavement supported on the aforementioned types of soil. The 2002 EIR found that the impact from unsuitable soils would be less than significant provided that appropriate mitigation measures are implemented during design and construction of 2002 proposed projects. This finding remains the same for the proposed 2010 Master Plan Update.

Mitigation measures that will be carried forward as part of the proposed 2010 Master Plan Update are listed below.

2002 EIR Mitigation Measures

Construction Mitigation

To minimize hazards to construction workers from unstable temporary slopes, the following measures shall be implemented by the construction contractor(s):

- GE-1 All earthwork and grading shall meet the requirements of State of California codes and shall be performed in accordance with the recommendations in the geotechnical investigation conducted for each proposed project at the Pierce College campus, and
- **GE-2** All excavation and shoring systems shall meet the minimum requirements of OSHA.

Operational Mitigation

Because of the potential for strong seismic ground shaking, unsuitable soils, and soil liquefaction, the following mitigation measures shall be implemented:

2002 EIR Mitigation Measures

- **GS-1** Geotechnical investigations shall be performed by qualified licensed professionals before final design of any structures, and recommendations provided in these reports should be implemented, as appropriate;
- **GS-2 Ground Shaking.** Design and construction of structures for the revised project shall conform to all applicable provisions of the State of California, Division of the State Architect, and the guidelines set forth in the 1998 California Building Code. The CBC is based on the 1997 Uniform Building Code and sets forth regulations concerning proper earthquake design and engineering. In addition, design and construction shall conform to the 1997 UBC earthquake design criteria for Seismic Zone 4.
- **GS-3 Liquefaction.** If liquefiable soils are identified by geotechnical investigations for project structures, then mitigation should be implemented. Appropriate mitigation, which could include the use of piles, deep foundations, dynamic densification, ground improvement, grouting, or removal of suspect soils, is dependent on site-specific conditions, which should be identified by the geotechnical investigation.
- **GS-4 Unsuitable Soil Conditions.** The geotechnical investigation of proposed facilities should fully characterize the presence and extent of corrosive, expansive, or loose compactable soil. After consideration of the collected data, appropriate mitigation can be designed. Mitigation options could include the following: removal of unsuitable subgrade soils and replacement with engineered fill, installation of cathodic protection systems to protect buried metal utilities, use of coated or nonmetallic (i.e., concrete or PVC) pipes that are not susceptible to corrosion, construction of foundations using sulfate-resistant concrete, support of structures on deep-pile

Issues		Less-than-		
100000		Significant		
		Impact with	Less-than-	
	Potentially	Mitigation	Significant	
	Significant	Incorporated	Impact	No Impact

foundation systems, densification of compactable subgrade soils with in situ techniques, and placement of moisture barriers above and around expansive subgrade soils to help prevent variations in soil moisture content.

e) Have soils incapable of adequately supporting the use of septic tanks or alternative waste water			\boxtimes
disposal systems where sewers are not available for the	Ш	Ш	
disposal of wastewater?			

No Impact. The 2002 FEIR did not find any impacts associated with the incapability of soils to adequately support the use of septic tanks or alternative wastewater disposal systems. The project site would not change under the proposed 2010 Master Plan Update. Therefore, impacts would be similar to those identified under the 2002 FEIR. No impact is anticipated to occur.

7. GREENHOUSE GAS EMISSIONS. Would the projec	t:		
a) Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?		\boxtimes	

Less-than-Significant Impact. At present, a quantitative CEQA threshold does not exist that would be applicable to the revised project. The Governor's Office of Planning and Research (OPR) Technical Advisory on CEQA and Climate Change suggests that in the absence of regulatory guidance or standards, lead agencies such as LACCD must undertake a project-by-project analysis that is consistent with available guidance and current CEQA practice to ascertain project impacts under CEQA.

It is unknown by what amount the revised project would need to reduce project-related greenhouse gas (GHG) emissions to provide its share of GHG reduction and meet the Assembly Bill 32 (AB 32) statewide GHG reduction target of 1990-level GHG emissions by 2020. As such, LACCD has adopted a qualitative threshold of "a level of project-related GHG emissions that is less than 'Business as Usual' (BAU) as defined by OPR in the above-referenced technical advisory."

Project-related GHG emissions were estimated for carbon dioxide (CO_2), methane (CH_4), and nitrous oxide (N_2O) for 2020. GHG emissions were not specifically analyzed in 2002 as analysis of the emissions was not required at the time. The results, provided below in Table 11, are presented in units of carbon dioxide equivalent (CO_2e) and take into account the GHG emissions reductions that would occur as a result of the several LEED energy- and water-efficiency design features that would be incorporated into the revised project.

Table 11. Estimate of Revised Project-Related Greenhouse Gas Emissions in Metric Tons per Year

Emission Source	2020 BAU Emissions	GHG Emissions Reductions Related to LEED Measures	2020 Emissions with LEED Efficiency Measures	Percent Reduction from BAU ^a
Mobile Source	40,657	_	40,657	_
Natural Gas Combustion	3,146	(315)	2,831	10.0%
Electricity Demand-Related	7,311	(731)	6,580	10.0%
Water Consumption-Related	53	(11)	42	20.0%
Total Revised Project	51,167	(880)	50,110	2.1%

^a LEED Silver Certification will require minimum energy and water use efficiencies of 10% and 20%, respectively, when compared to "business as usual" for new construction. Actual efficiency ratings could exceed these minimum requirements. Source: ICF International 2010. Calculations are provided in the air quality appendix.

Issues	Potentially	Less-than- Significant Impact with Mitigation	Less-than- Significant	
	Significant	Incorporated	Impact	No Impact

As shown above in Table 11, GHG emissions related to energy use and water consumption would be reduced by 10% and 20%, respectively, from BAU emission levels with adoption of LEED design measures. Overall revised project-related GHG emissions, which include mobile-source emissions, would be reduced by 880 metric tons per year, or 2.1% below BAU. As such, revised project GHG emissions would be less than significant.

Mitigation Measures

Construction-period Measures

- **AQ-3** Require construction equipment to use the best available technology to reduce emissions.
- **AQ-4** Minimize, reuse, and recycle construction-related waste.
- **AQ-5** Minimize grading, earthmoving, and other energy-intensive construction practices.
- AQ-6 Landscape to preserve natural vegetation and maintain watershed integrity.
- **AQ-7** Use recycled, low-carbon, and otherwise climate-friendly building materials, such as salvaged and recycled-content materials, for buildings, hard surfaces, and non-plant landscaping.

Operational-period Measures

- **AQ-8** Increase exterior wall and attic/roof insulation beyond Title 24 requirements.
- AQ-9 Use light-colored roof materials to reflect heat.
- AQ-10 Use double-paned windows.
- AQ-11 Use energy-efficient low-sodium parking lot lights.
- AQ-12 Use energy-efficient and automated controls for lighting.
- **AQ-13** Use energy-efficient and automated controls for air conditioners.
- **AQ-14** Use energy-efficient appliances.
- AQ-15 Use solar or low-emission water heaters.
- **AQ-16** For vehicles that will serve the proposed 2010 Master Plan Update on a frequent basis (e.g., forklifts), require use of alternative fuels and measures to maximize fleet efficiency.

Residual Impacts

Given the relatively small amount of GHG emissions that would be emitted from this revised project during short-term construction and long-term operations, with implementation of the above-prescribed mitigation measures, the proposed 2010 Master Plan Update's GHG emissions, without considering other cumulative global emissions, would not be large enough to cause substantial climate change directly. Thus, revised project emissions are considered less than significant.

b) Conflict with an applicable plan, policy or regulation	 <u></u>	<u></u>	
adopted for the purpose of reducing the emissions of			
greenhouse gases?	 · 	· 	

Less-than-Significant Impact. AB 32 identified a target level of GHG emissions in California for 2020 of 427 million metric tons (MMT) of CO_2e , which is approximately 28.5% less than the 2020 BAU emissions estimate of 596 MMT CO_2e (California Air Resources Board [CARB]). To achieve this GHG reduction, there will have to be widespread

Issues		Less-than- Significant		
		Impact with	Less-than-	
	Potentially	Mitigation	Significant	
	Significant	Incorporated	Impact	No Impact

reductions in GHG emissions across California. Some of these reductions will come from changes in vehicle emission and mileage standards, the use of alternative sources of electricity, and higher energy efficiency standards for existing facilities, among other measures. The remainder of the necessary GHG reductions will need to come from lower carbon intensities, compared with BAU conditions, at new facilities. Therefore, this analysis uses a threshold of significance that is in conformance with the state's goals.

On December 12, 2008, CARB adopted the AB 32 Scoping Plan, which details specific GHG emission-reduction measures that target specific GHG emissions sources. Revised project-related GHG emissions would be reduced as a result of several AB 32 Scoping Plan measures. The Scoping Plan considers a range of actions, which include direct regulations, alternative compliance mechanisms, monetary and non-monetary incentives, voluntary actions, and market-based mechanisms (e.g., cap-and-trade system), among other actions. Some pertinent examples include the following:

- Mobile-source GHG emission-reduction measures:
 - o Pavley emissions standards (19.8% reduction),
 - Low-carbon fuel standard (7.2% reduction),
 - o Vehicle efficiency measures (2.8% reduction); and
- Energy-production-related GHG emission-reduction measures:
 - Natural gas transmission and distribution efficiency measures (7.4% reduction),
 - o Natural gas extraction efficiency measures (1.6% reduction),
 - o Renewables (electricity) portfolio standard (33.0% reduction).

These reductions in mobile-source and energy-production GHG emissions would be in addition to those that would be utilized for the revised project discussed above, which are related to LEED design measures that would reduce project-specific GHG emissions related to energy consumption and water use by 10% and 20%, respectively. Overall, the revised project would be consistent with the AB 32 goal of reducing statewide GHG emissions to 1990 levels by 2020. Project-related GHG emissions would be less than significant.

A project's consistency with implementing programs and regulations to achieve the statewide GHG emissions-reduction goals established under Executive Order S-3-05 and AB 32 cannot yet be evaluated because the programs and regulations are still under development. Nonetheless, the Climate Action Team (CAT), established by Executive Order S-3-05, has recommended strategies for implementation at the statewide level to meet the goals of the executive order. In the absence of an adopted plan or program, the CAT's strategies serve as current statewide approaches to reducing the state's GHG emissions. Because no other GHG emissions plan or program has been adopted that would apply to the revised project, consistency with the CAT's strategies is assessed to determine if the revised project's contribution to cumulative GHG emissions is considerable.

In its report to the governor and the legislature, the CAT recommended strategies that could be implemented by various state boards, departments, commissions, and other agencies to reduce GHG emissions. The CAT strategies relevant to the revised project, as well as the implementing agencies and the revised project design features or mitigation measures which would be consistent with the strategies, are listed in Table 12. Given the analysis in Table 12, the revised project would minimize its contribution to GHG emissions and global climate because of its consistency with these strategies.

Issues	Potentially	Less-than- Significant Impact with Mitigation	Less-than- Significant	
	Significant	Incorporated	Impact	No Impact

Table 12 Revised Project Consistency with Climate Action Team Strategies

CAT Strategy	Implementing Agency	Revised Project Consistency
Vehicle Climate Change Standards	Air Resources Board	The revised project would be consistent with this strategy to the extent that new passenger vehicles and light trucks are purchased by the project's users, starting with the 2009 model year.
Hydrofluorocarbon Reduction Strategies	Air Resources Board	Revised project air-conditioning systems would comply with the latest standards for new systems. Consumer products containing hydrofluorocarbons would comply with California Air Resources Board regulations, when adopted.
Building Energy Efficiency Standards in Place	Energy Commission	The revised project will meet or exceed California energy standards or energy-efficient lighting requirements.
Appliance Energy Efficiency Standards in Place	Energy Commission	The revised project will meet or exceed California energy standards or energy-efficient lighting requirements.
Water Use Efficiency	Department of Water Resources	The revised project will meet or exceed California water use and conservation standards.
Source: California Climate		Team Report to the Governor and Legislature, March

2006; compiled by ICF International, January 2010.

With implementation of the design features, the revised project would be consistent with applicable plans, policies, and regulations. Impacts from project construction and operation related to GHG emissions plans, policies, and regulations would be less than significant. No mitigation is required.

8. HAZARDS AND HAZARDOUS MATERIALS. Would	the project:		
a) Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?			

Less-than-Significant Impact with Mitigation Incorporated. The 2002 FEIR determined that the impact from use and storage of hazardous materials at Pierce College would be less than significant if anticipated areas of construction and ground disturbance would not overlap with hazardous material storage and use areas and if specified mitigation measures pertaining to remediation of asbestos-containing material and lead-based paint would be completed before any new construction or demolition of existing buildings. According to records obtained by hazardous materials specialty firm Winzler & Kelley Consulting Engineers in August 2009, hazardous materials investigations have been conducted at the College. As a standard practice, the College and its hazardous materials subconsultant prepare hazardous materials studies for new building projects prior to construction, and the hazardous materials reports are made part of the bid package and provided to the general contractor in advance of construction. Remediation is carried out as recommended by the hazardous materials consultant.

According to a report prepared in October 2005 by Leymaster Environmental Consulting, two underground storage tanks (USTs) and associated piping and fuel dispensers were removed from the College in March 2005. Both USTs were 10,000 gallons in volume. Seven soil samples were collected at the site on March 29, 2005. One of the samples from beneath the fuel dispenser contained 250 milligrams per kilogram (mg/kg) of total petroleum hydrocarbons (TPH) as diesel. Two additional soil samples were collected on September 27, 2005. These samples were collected from beneath the fuel dispenser at depths of 5 and 10 feet. (The previous March 25, 2005, sample was collected beneath the fuel dispenser at approximately 2 feet.) TPH as diesel was not detected from the September 27, 2005, samples. The report concluded that, based on the lack of detectable TPH in the deeper samples, the 250 mg/kg of TPH in the March 2005 sample did not constitute a threat to groundwater, and no further investigation was recommended at the site.

Issues		Less-than- Significant Impact with	Less-than-	
	Potentially	Mitigation	Significant	
	Significant	Incorporated	Impact	No Impact

Only one other operational UST is known to exist at the College. One UST is operational and used by the sheriff's station. Therefore, it is unlikely that the proposed construction would encounter any additional USTs. If, during construction of the 2010 Master Plan Update projects, USTs are encountered, 2002 EIR mitigation measures HM-1 and HM-2 will be implemented. Phase I studies conducted for the individual building projects included soil testing, and, to date, no herbicide or pesticide contamination has been reported. Nonetheless, soil testing for future 2010 Master Plan Update projects shall be undertaken in accordance with 2002 mitigation measure HM-3.

As a standard practice, the College conducts asbestos and lead-based paint surveys for its demolition projects. Asbestos and lead-based paint are handled and disposed of according to state and county standards. The College will continue to implement mitigation measure HM-4 for any future demolition, including that proposed in the 2010 Master Plan Update. This level of impact would remain the same under the proposed 2010 Master Plan Update. Therefore, impacts would remain less than significant with mitigation incorporated.

The mitigation measures listed below will be carried forward from the 2002 EIR as part the proposed 2010 Master Plan Update. The measures must be completed prior to construction of each revised project to allow development of appropriate worker protection and waste management plans that describe the proper handling, treatment, and storage of hazardous waste from the revised projects.

2002 EIR Mitigation Measures

HM-1 Moderate Potential Sites. A thorough review of available environmental records, a thorough historical land use assessment, and a site-specific inspection shall be completed. A record review shall identify data that confirm remediation of on-site and off-site contamination of former leaking underground storage tank (LUST) sites or agency-certified closure of the site. Tanks that are not reported shall undergo further record review to determine the status, condition, contents, and number of tanks. At sites with inactive or improperly abandoned underground storage tank (USTs), the tanks may be old and in poor condition and, therefore, shall be thoroughly evaluated for condition and possible leaks. A detailed site inspection of hazardous material storage areas in or near proposed project areas shall be performed to determine if leaks or spills may have caused potential environmental contamination. Results of the record review or visual inspection that indicate contamination may be present in a proposed project area shall cause sites with medium potential to be treated as sites with high potential.

Relocation of the plant facilities buildings and appurtenances will require removal and relocation of their two USTs. Removal of the active USTs in the plant facilities vehicle maintenance area shall be monitored by a qualified professional for evidence of leaks. If any evidence of leakage is noted, a site assessment shall be performed and appropriate remediation completed.

HM-2 High Potential Site. Current agency records of the site with high potential (P. L. Porter Company) shall be reviewed to assess and verify the extent of potential contamination of surface and underlying soil as well as shallow groundwater. If the review indicates contamination may have spread to the revised project area on campus, an investigation shall be designed and performed to verify the presence and extent of contamination at the site. A qualified and approved environmental consultant shall perform the review and investigation. Results shall be reviewed and approved by the Los Angeles County Fire Department, Health Hazardous Materials Division, or California Department of Toxic Substances Control prior to construction. The investigation shall include collecting samples for laboratory analysis and quantification of contaminant levels within the proposed excavation and surface disturbance areas. Subsurface investigation for sites with high potential shall determine appropriate worker protection and hazardous material handling and disposal procedures appropriate for the subject site.

Issues		Less-than- Significant		
		Impact with	Less-than-	
	Potentially	Mitigation	Significant	
	Significant	Incorporated	Impact	No Impact

Construction activities that require dewatering may require treatment of contaminated groundwater prior to discharge. Appropriate regulatory agencies, such as the California Environmental Protection Agency, the Regional Water Quality Control Board (RWQCB), and the Los Angeles County Fire Department, Health Hazardous Materials Division, shall be notified in advance of construction, and discharge permits identifying discharge points, quantities, and groundwater treatment (if necessary) shall be identified and obtained.

Areas with contaminated soil determined to be hazardous waste shall be excavated by personnel who have been trained under the OSHA-recommended 40-hour safety program (29 Code of Federal Regulations [CFR] Section 1910.120), with an approved plan for excavation, control of contaminant releases to the air, and off-site transport or on-site treatment. Health and safety plans prepared by a qualified and approved industrial hygienist shall be developed to protect the public and all workers in the construction area. Health and safety plans shall be reviewed and approved by the appropriate agencies, such as the Los Angeles County Fire Department, Health Hazardous Materials Division, or California Department of Toxic Substances Control.

- HM-3 Residual Pesticides/Herbicides. Soil samples shall be collected in construction areas where the land has historically or is currently being farmed to verify and delineate the possibility of and extent of pesticide and/or herbicide contamination. Excavated materials containing elevated levels of pesticide or herbicide require and shall undergo special handling and disposal procedures. Standard dust suppression procedures shall be used in construction areas to reduce airborne emissions of these contaminants and reduce the risk of exposure to workers and the public. Regulatory agencies for the State of California and County of Los Angeles shall be contacted to plan handling, treatment, and/or disposal options.
- HM-4 Asbestos-Containing Material and Lead-Based Paint. Records of previously completed asbestos-containing material and lead-based paint remediation at the College shall be reviewed. A survey of buildings, structures, and pavement areas to be removed or demolished to assess the presence and extent of asbestos-containing materials and lead-based paint shall be conducted. A qualified and approved environmental specialist shall conduct this study prior to final project design. The investigation shall include collecting samples for laboratory analysis and quantification of contaminant levels in the buildings and structures proposed for demolition and in pavement disturbance areas. According to these findings, appropriate measures for handling, removal, and disposal of the materials can be developed. Regulatory agencies for the State of California and Los Angeles County shall be contacted to plan handling, treatment, and/or disposal options.

b) Create a significant hazard to the public or the			
environment through reasonably foreseeable upset and			
accident conditions involving the release of hazardous		Ш	Ш
materials into the environment?			

Less-than-Significant Impact with Mitigation Incorporated. The 2002 FEIR determined that the impact from use and storage of hazardous materials at Pierce College would be less than significant if anticipated areas of construction and ground disturbance would not overlap with hazardous material storage and use areas and if specified mitigation measures pertaining to remediation of asbestos-containing material and lead-based paint would be completed before any new construction or demolition of existing buildings. This level of impact would remain the same under the revised project. The mitigation measures (HM-1–HM-4) described above under impact response 7(a) would be carried forward. Therefore, impacts would remain less than significant with mitigation incorporated.

Issues	Potentially Significant	Less-than- Significant Impact with Mitigation Incorporated	Less-than- Significant Impact	No Impact
c) Emit hazardous emissions or handle hazardous or acutely hazardous materials, substances, or waste within 0.25 mile of an existing or proposed school?				

Less-than-Significant Impact with Mitigation Incorporated. Various types of hazardous materials and hazardous waste are stored on campus. These include paints, solvents, and small quantities of biological waste. Additionally, a number of different types of chemicals used for instructional purposes are stored on campus. The chemicals are safely stored and/or locked away. No new buildings are proposed that would result in the storage, transport, or use of hazardous wastes in substantial amounts compared to existing conditions.

The 2002 FEIR identified, within and surrounding the project, two hazardous sites with moderate potential and one site with high potential to affect the proposed 2010 Master Plan Update. The plant facilities building, located within the footprint of Pierce College, was regarded as a site with moderate potential to emit hazardous materials. Under the 2002 EIR, the plant facilities building was to have been demolished and, therefore, would have created a significant impact. However, under the proposed 2010 Master Plan Update, the plant facilities building would no longer be demolished and would, therefore, no longer create a significant impact. Mitigation measures were provided in the 2002 EIR to prevent further contamination from the two remaining sites; such mitigation would continue to be required as part of the proposed 2010 Master Plan Update. These mitigation measures (HM-1–HM-4) are described above under impact response 7(a). As such, no new impacts would be created. Impacts would remain the same if not less because of the removal of demolition of the plant facilities building from the list of master plan projects. Impacts would be less than significant with mitigation.

d) Be located on a site that is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would create a significant hazard to the public or the environment?				
--	--	--	--	--

Less-than-Significant Impact with Mitigation Incorporated. In support of the analysis conducted for the 2002 FEIR, field reconnaissance of the project site and surrounding project area was conducted to verify current conditions. The field reconnaissance component of the study relied on a visual survey of surface conditions by an environmental geologist to identify sites where storage containers (chemicals, paint, oil) were present or evidence of stained soil or corroded pavement was visible, suggesting chemical spillage on the ground. This survey concentrated on the project site and sites identified in the 2002 Master Plan EDR database report. A site reconnaissance of the Pierce College campus was conducted in the presence of Pierce College personnel who were familiar with campus hazardous material use, storage, and disposal. Reconnaissance of the area surrounding the campus was limited to viewing properties from adjacent public streets and alleys; no attempt was made to gain access to any properties except the open parking lot areas. The 2002 Master Plan would not have placed housing or structures on top of any parcel designated by the EDR report as lying within an area susceptible to moderate or high hazardous impacts. However, there were three sites located with a 0.25 mile of the project site that were included as part of the EDR report. Mitigation measures were prescribed as part of the 2002 Master Plan to reduce any impacts on the project because of the proximity of these hazardous sites. These mitigation measures (HM-1-HM-4) are described above under impact response 7(a). An update to the previous EDR report was produced. No new hazardous sites were found to occur on the site (EDR 2009). Therefore, impacts would remain as previously estimated, and mitigation measures HM-1-HM-4 would be carried forward as part of the proposed 2010 Master Plan Update. Therefore, impacts would remain less than significant with mitigation.

Issues	Potentially Significant	Less-than- Significant Impact with Mitigation Incorporated	Less-than- Significant Impact	No Impact	
		T			
e) For a project located within an airport land use plan or, where such a plan has not been adopted, within 2 miles of a public airport or public use airport, would the project result in a safety hazard for people residing or working in the project area?					
No Impact. The 2002 EIR found no impact related to safety location of the project would not change and no new airport impacts would remain the same as those previously analyzed. N	s have beer	developed	in the imme		
f) For a project within the vicinity of a private airstrip, would the project result in a safety hazard for people residing or working in the project area?					
No Impact. The 2002 EIR found no impact related to safety hazards from proximity to airports. Because the project location discussed in the proposed 2010 Master Plan Update has not changed and no new airstrips have been developed within 2 miles, no impact would occur as a result of the proposed 2010 Master Plan Update					
g) Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?		\boxtimes			
Less-than-Significant Impact with Mitigation Incorporated. The 2002 EIR addressed issues related to potential impacts on emergency services in the Public Services section of the EIR. Specifically, it discussed the ability of the police and fire departments to arrive promptly at the scene of an emergency. The new events center would have increased the need for additional emergency services by increasing the number of visitors to the campus. The previous EIR included emergency response mitigation measures. These mitigation measures would be carried over as part of the proposed 2010 Master Plan Update. The master plan is designed to improve accessibility to the campus for the emergency provider through roadway and street improvements as well as updated infrastructure. It is also designed to increase the success of any applicable emergency plan. Impacts would remain less that significant with mitigation.					
The mitigation measure related to emergency response that wo Master Plan Update is as follows:	ould be carrie	d over to the	proposed 20	010	
2002 EIR Mitigation Measures					
PPS-2 Pierce College shall design and implement a Special Event Security Plan, in coordination with the Los Angeles County Sheriff's Department and the Los Angeles Police Department, for the new events center. Issues addressed may include security needs, emergency evacuation procedures, and money handling issues.					
h) Expose people or structures to a significant risk of loss, injury, or death involving wildland fires, including areas where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?					

Less-than-Significant Impact with Mitigation Incorporated. The Public Services section of the 2002 EIR addressed potential impacts from fires, including impacts related to the ability of the fire department to access the scene of a fire. According to the Zoning Information and Map Access System for the City of Los Angeles (ZIMAS), the proposed 2010 Master Plan Update would be located in an area that is designated as a Very High Fire Hazard Severity Zone (City of Los Angeles 2004). The previous EIR included measures to decrease the potential for fires to occur on campus as well as fire code and regulation compliance measures. These mitigation measures would be carried over as part of the proposed 2010 Master Plan Update. Furthermore, in contrast to the previous master

Issues	Potentially	Less-than- Significant Impact with Mitigation	Less-than- Significant	
	rotentially	wiitigation	Significant	
	Significant	Incorporated	Impact	No Impact

plan, the proposed 2010 Master Plan Update would not include on-campus housing and, therefore, would not place housing within an area of high fire hazard. Impacts would be less than previously anticipated in the 2002 EIR. The mitigation measures are as follows:

- **FPS-1** The College shall consult with the city engineer and the fire department regarding appropriate standards (e.g., lane widths, grades, cut corners, etc.) for private streets and entry gates to ensure adequate access for fire department vehicles and equipment.
- FPS-2 All landscaping shall use fire-resistant plants and materials.
- **FPS-3** Sprinkler systems shall be required throughout any structure to be built, in accordance with state codes and standards established by the State of California, Division of the State Architect, and State Fire Marshal.
- **FPS-4** The revised project shall comply with all applicable codes and regulations administered by the State of California, Division of the State Architect, and State Fire Marshal.

Impacts would remain less than significant with mitigation.

9. HYDROLOGY AND WATER QUALITY. Would the project:					
a) Violate any water quality standards or waste discharge requirements?		\boxtimes			

Less-than-Significant Impact with Mitigation Incorporated. Similar to the 2002 FEIR, the proposed 2010 Master Plan Update would include projects that would create new sources of runoff and water discharge. However, the projects would comply with Section 404 of the federal Clean Water Act by implementing a Standard Urban Stormwater Mitigation Plan (SUSMP) to decrease impacts from runoff.

Furthermore, the 2002 Master Plan included improvements such as detention basins and water quality ponds to reduce polluted runoff and meet water quality standards established for the region; these elements would be carried forward as part the proposed 2010 Master Plan Update. Under the 2010 Master Plan Update, all new buildings will be certified under the LEED program, in accordance with the policy adopted by the Board of Trustees in May 2002. In addition, the 2010 Master Plan Update will include a series of campus-wide strategies to improve water conservation, as described below. Although a water reclamation facility was proposed in the 2002 Master Plan, it was dependent upon the expansion of City of Los Angeles graywater distribution lines to the campus, and thus, speculative. Therefore, the 2002 EIR analysis did not include the water reclamation facility in its wastewater calculations and analyzed impacts assuming no reclamation facility would be constructed. Currently, the City's plans to extend graywater distribution lines in the valley are on hold. Wastewater, as a result of the 2010 Master Plan update, would be treated similar to how wastewater is currently treated at the campus. However, some of the conservation methods incorporated into the design and campus planning would result in the reduction of water use and conservation of water over existing levels.

Maximizing Water Conservation

New buildings and landscape elements will incorporate appropriate water conservation strategies that focus on reducing the use of potable water. These strategies will include the use of efficient irrigation, low-maintenance and native plant species, low-flow plumbing fixtures, and automatic sensors. Reclaimed water will be used for irrigation should it become available at the campus.

Managing Stormwater

Stormwater management strategies would incorporate natural landscape elements to address issues related to water quantity and quality. Swales, bio-retention basins, green roofs, and permeable or porous paving materials will be used to manage stormwater by reducing runoff and the amount of contaminants.

No new impacts are anticipated, and impacts would remain as previously analyzed, less than significant with mitigation.

Issues	Potentially Significant	Less-than- Significant Impact with Mitigation Incorporated	Less-than- Significant Impact	No Impact
--------	----------------------------	--	-------------------------------------	-----------

The following mitigation measures will be carried forward as part of the proposed 2010 Master Plan Update:

2002 EIR Mitigation Measures

- **SW-1** A Standard Urban Stormwater Mitigation Plan shall be developed in accordance with Los Angeles County stormwater permit requirements, and
- **SW-2** Water quality ponds shall be implemented, where feasible, as a best management practice (BMP) to capture and treat polluted runoff from parking lots.
- **SW-3** Vegetated swales and retention areas along pedestrian circulation routes, in parking lots, and around buildings will be constructed to capture stormwater runoff and allow groundwater recharge.
- **SW-4** A campus-wide approach to stormwater catchment and appropriate plant ecology will be implemented to reduce infrastructure loads during rain events, increase groundwater availability, and reduce annual irrigation needs.

b) Substantially deplete groundwater supplies or interfere substantially with groundwater recharge such that there would be a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level that would not support existing land uses or planned uses for which permits have been granted)?				
--	--	--	--	--

No Impact. The 2002 FEIR found that building renovations, new building construction, and development of the agricultural fields would have no adverse effects on groundwater resources. The campus relies on water delivered by the Los Angeles Department of Water and Power (LADWP) through existing pipelines, which were to be improved to meet the needs of the 2002 Master Plan. These improvements would be carried forward as part of the proposed 2010 Master Plan Update. The College does not have any active wells on campus and therefore does not pump groundwater for its water needs. Because impacts on groundwater resources would not change under the proposed 2010 Master Plan Update, it is expected that impacts would remain the same as or less than previously analyzed. There would be no impacts on groundwater.

c) Substantially alter the existing drainage pattern		
of the site or area, including through the alteration of the		
course of a stream or river, in a manner that would result		Ш
in substantial erosion or siltation on or off site?		

Less-than-Significant Impact with Mitigation Incorporated. Under the proposed 2010 Master Plan Update, the existing drainage pattern would not be altered significantly. The 2002 EIR found that the eastern portion of the campus has an existing storm drain network with a well-planned hierarchy of storm drain diameters to accommodate increased flow as the network collects additional runoff flowing toward the Los Angeles River. Campus facilities personnel state that the existing system performs adequately in this portion of the campus. Under the proposed 2010 Master Plan Update, the new and renovated facilities proposed for this portion of the campus would increase the amount of runoff flowing into the existing system. As discussed in the 2002 EIR, improvements would be made through the addition of new storm drains that would increase runoff collection capacity and maintain an adequate level of service for this portion of campus. However, the cancellation of the science partnerships would reduce the previously estimated runoff and drainage impacts. Although development of the equestrian education center, the child development center building, and the agricultural partnerships would remain under the proposed 2010 Master Plan Update, impacts would remain less than significant with mitigation.

⁸ Psomas. 2002. *Draft Preliminary Utility Evaluation for Pierce College Los Angeles Community College District*. February 11.

Issues	Potentially	Less-than- Significant Impact with Mitigation	Less-than- Significant	
	Significant	Incorporated	Impact	No Impact

The mitigation measures previously described in the 2002 EIR would be carried forward for the proposed 2010 Master Plan Update. The measures are as follows:

2002 EIR Mitigation Measures

- **FD-1** Detention basins or other appropriate drainage facilities shall be installed, and the storm drain system shall be improved to (a) meet anticipated increases in runoff from new facilities and impervious surfaces and (b) bring the western portion of campus up to an adequate level of service and reduce flooding; and
- **FD-2** Earth berms, channels, or vegetated swales shall be provided to capture runoff from agricultural fields to reduce topsoil runoff.

d) Substantially alter the existing drainage pattern		
of the site or area, including through the alteration of the	 	
course of a stream or river, or substantially increase the		
rate or amount of surface runoff in a manner that would		
result in flooding on or off site?		

Less-than-Significant Impact with Mitigation Incorporated. See impact discussion under response 8(a). As stated above, the proposed 2010 Master Plan Update would include projects that would create new sources of runoff and water discharge similar to projects proposed under the 2002 Master Plan. However, master plan parking lot development and pedestrian improvements that would be carried forward would comply with Section 404 of the federal Clean Water Act by implementing a SUSMP to decrease impacts from runoff. Furthermore, the 2002 Master Plan included improvements such as detention basins and water quality ponds to reduce polluted runoff and meet water quality standards established for the region; these elements would be carried forward as part the proposed 2010 Master Plan Update. As such, no new impacts are anticipated, and impacts would remain as previously analyzed, less than significant with mitigation.

The following mitigation measures will be carried forward as part of the proposed 2010 Master Plan Update:

2002 EIR Mitigation Measures

- **SW-1** A Standard Urban Stormwater Mitigation Plan shall be developed in accordance with Los Angeles County stormwater permit requirements, and
- **SW-2** Water quality ponds shall be implemented, where feasible, as a BMP to capture and treat polluted runoff from parking lots.

These mitigation measures would be adequate in reducing adverse effects on surface waters to levels below significant. No streams or rivers would be altered under the 2002 Master Plan or 2010 Master Plan Update.

e) Create or contribute runoff water that would exceed the capacity of existing or planned stormwater		
drainage systems or provide substantial additional		
sources of polluted runoff?		

Less-than-Significant Impact with Mitigation Incorporated. See impact discussion under response 8(a). As stated above, the proposed 2010 Master Plan Update would include projects that would create new sources of runoff and water discharge similar to projects proposed under the 2002 Master Plan. However, with respect to parking lot development and pedestrian improvements that would be carried forward as part of the proposed 2010 Master Plan Update, the project would comply with Section 404 of the federal Clean Water Act by implementing a SUSMP to decrease impacts from runoff. Furthermore, the 2002 Master Plan included improvements such as detention basins and water quality ponds to reduce polluted runoff and meet water quality standards established for the region; these elements would be carried forward as part the proposed 2010 Master

Issues		Potentially	Less-than- Significant Impact with Mitigation	Less-than- Significant		
	As such, no new impacts are anticipated, and in the twith mitigation.	Significant	Incorporated remain as p	Impact previously ar	No Impact	
The following mitigation measures will be carried forward as part of the proposed 2010 Master Plan Update:						
2002 EIR Mitig	ation Measures					
SW-1	A Standard Urban Stormwater Mitigation Plan s		oped in acco	rdance with L	.os	
SW-2	Angeles County stormwater permit requirements Water quality ponds shall be implemented, when polluted runoff from parking lots.		s a BMP to ca	apture and tre	eat	
f) Other	wise substantially degrade water quality?		\boxtimes			
Less-than-Significant Impact with Mitigation Incorporated. The previous master plan included a public/private agricultural partnership that would have transformed 21 to 23 acres of underutilized fields into productive agricultural uses for the community and the College campus. This would have greatly increased the amount of water needed on campus as well as the amount of contaminated water from irrigation runoff. However, under the 2010 Master Plan Update, the College does not propose such substantial changes and, rather, would maintain and enhance the existing fields and operations. Therefore, impacts on water quality would be less than previously anticipated. Additionally, the mitigation measures carried forward and described under impact discussion 8(a) (SW-1 and SW-2) would further reduce any impacts on water quality. Impacts would remain less than significant with mitigation.						
as mapped or	housing within a 100-year flood hazard area n a federal Flood Hazard Boundary or Flood te Map or other flood hazard delineation map?					
floodplain. All of found in the 20 flooding in any	coposed Pierce College development would not construction and project operations occurring und 102 EIR, would be within Zone X-delineated land, year over a 500-year period. Therefore, the precople by placing them in a floodplain. No impact v	ler the proposice. Zone X is do oject would it	sed 2010 Ma efined as are	ster Plan Upo as with a 0.2	date, as also % chance of	
	within a 100-year flood hazard area at would impede or redirect flood flows?				\boxtimes	
All construction 2002 EIR, wou any year over	oposed development on Pierce College would not and project operations occurring under the proposed be within Zone X-delineated land. Zone X is a 500-year period. Therefore, the project would not them in a floodplain. No impact would occur.	osed 2010 Ma defined as ar	aster Plan Up eas with a 0.	odate, as also .2% chance o	found in the of flooding in	
of loss, injury	se people or structures to a significant risk y, or death involving flooding, including result of the failure of a levee or dam?					
Less-than-Sig	nificant Impact with Mitigation Incorporated.	The propose	d 2010 Mast	er Plan Unda	te would not	

Less-than-Significant Impact with Mitigation Incorporated. The proposed 2010 Master Plan Update would not place people in an area where they would be susceptible to loss, injury, or death from flooding. However, as concluded in the 2002 EIR, deficient drainage conditions contribute to flooding on the western portion of campus. Although the agriculture private/public partnership proposed as part of the 2010 Master Plan Update is not as extensive as that proposed in 2002, similar impacts are assumed. As such, no new impacts are anticipated, and impacts would remain as previously analyzed, less than significant with mitigation incorporated.

Issues		Potentially Significant	Less-than- Significant Impact with Mitigation Incorporated	Less-than- Significant Impact	No Impact
The following	mitigation measures will be carried forward as par	t of the propo	osed 2010 Ma	ster Plan Up	date:
2002 EIR Miti	igation Measures				
FD-1	Detention basins or other appropriate drainage drain system shall be improved to (a) meet facilities and impervious surfaces and (b) bring an adequate level of service and reduce flooding	anticipated ing the western	ncreases in r	unoff from r	new
FD-2	Earth berms, channels, or vegetated swales agricultural fields to reduce topsoil runoff.	shall be pro	vided to capt	ture runoff fi	rom
j) Inun	idation by seiche, tsunami, or mudflow?				
campus would to these occur boundaries of	not incur impacts from tsunamis. Because of its curd not be subject to seiche or mudflow. Therefore, be trences and because the proposed 2010 Master Peierce College, impacts would remain the same. N	ecause the 2 lan Update in	002 EİR did n nprovements	ot find any in would still be	npacts relate
	ID USE AND PLANNING. Would the project: sically divide an established community?				
College. The p College have renovate and include demol new facilities, originally plan Update, there temporary, lo	gnificant Impact. The proposed 2010 Master Plan proposed improvements would not divide an alread co-existed for a number of years; the College wou restructure its current layout and building uses. As lition of various existing structures, excavation and and renovation and modernization of existing fact and under the 2002 Master Plan would no longer aby reducing previously analyzed impacts. The recalized, site-specific disruptions for land uses elated traffic from trucks and equipment in the ar	y established uld not expan noted in the grading of stillities. However be carried our maining consin the area.	community bed outside its ed 2002 FEIR, copecific sites over, four of the tunder the postruction actives. These would partial and/or	ecause the crexisting footponstruction a on campus, created a compus, created a composed 2010 titles would reduced be related	ommunity and rint but would ctivities would onstruction colition project of Master Platesult in some primarily to the color of the colo

emissions (see the air quality, noise, and traffic and circulation analyses for further discussion). Therefore, impacts would remain less than significant.

b) Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including the general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?

No Impact. Applicable land use plans for the proposed 2010 Master Plan Update are the City of Los Angeles General Plan and Zoning Code and the Canoga Park-Winnetka-Woodland Hills-West Hills Community Plan. The city's general plan currently labels the project area with multiple land uses designations: Public Facilities, Open Space, and Neighborhood Office Commercial (ZIMAS 2004). The zoning code is consistent with these designations; the project area is zoned for Commercial (C4-D2), Open Space (OS), and Public Facilities (PF) (ZIMAS 2004). Educational facilities are an allowed use under the Public Facilities designation. With the open space that would be preserved under the proposed update, the proposed 2010 Master Plan Update would remain consistent with both the general plan and the community plan. Furthermore, the College has operated in this area for 62 years. Previous updates and

Issues	Potentially Significant	Significant Impact with Mitigation Incorporated	Less-than- Significant Impact	No Impact
revisions to the general and community plans recognize that the plans acknowledge the benefit of the school to the area. As such community plan, Pierce College has been described as an imporprogram is one of the few remaining connections to the community plan revitalize the agrarian nature of the College through community plan recognizes the need for continued development of impacts were found within the 2002 EIR. As such, any impacts we new impacts would occur.	n, no new important part of nity's agrarian the agricultural of equestrian,	pacts are exp the history of past. The pr ural/equestrian hiking, and bi	ected to occi of the area. It oposed 2010 n educational icycle trails in	ur. Within the s agricultural Master Plan centers. The the area. No
c) Conflict with any applicable habitat conservation plan or natural communities conservation plan?				
No Impact. The College supports no substantive areas of na Preserve in Canyon de Lana in the southwest corner of the confidence of the deplanted during the 1960s, and the Arboretum in the southeast planted tree species native to southern California. Otherwis agricultural fields and large areas of open space that are do (primarily non-native) horticultural tree species, and ornamplans or natural community conservation plans for which the conflict. As such, impacts would remain the same as those p impacts.	ampus, which stern portion e, biological minated by rental shrubs proposed 20	h supports re of the Colleg resources on non-native we . There are 010 Master I	estored nativ ge, which su in campus a eedy vegeta no habitat o Plan Update	e vegetation pports some re limited to tion, various conservation would be in
11. MINERAL RESOURCES. Would the project:				
a) Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?				\boxtimes
No Impact. The 2002 FEIR did not identify any unique geological affected by the proposed 2010 Master Plan Update. Therefore improvements would continue to be limited to the boundaries of the same. There would be no impact.	, because the	e proposed 2	2010 Master	Plan Update
b) Result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan?				
No Impact. See impact discussion under response 10(a). The resources on the College campus. Implementation of the 20 site. Therefore, impacts resulting from the loss of availability on the expected to occur.	10 Master Pl	an Update w	vould occur	on the same
12. NOISE. Would the project result in:				
a) Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance or applicable standards of other agencies?		\boxtimes		
Long than Cignificant Impact with Mitigation Incompared	The EID for	the 2002 M	actor Dlan a	onduded the

Less-than-Significant Impact with Mitigation Incorporated. The EIR for the 2002 Master Plan concluded the project would comply with City of Los Angeles Noise Ordinance limits on temporary construction noise and permanent operational noise after implementation of construction noise mitigation measures. The noise ordinance specifies the

Issues		Less-than- Significant		
		Impact with	Less-than-	
	Potentially	Mitigation	Significant	
	Significant	Incorporated	Impact	No Impact

maximum noise level for powered equipment or powered hand tools. Any powered equipment or powered hand tool that produces noise exceeding 75 dBA at a distance of 50 feet from construction and industrial machinery is prohibited. However, the above noise limitation shall not apply where compliance is technically infeasible.

Some of the facilities proposed by the 2002 Master Plan that were either unusually noisy or close to residential areas at the campus boundary have been cancelled. These include the following: 1) the agricultural education experiences facility and 2) the horticultural partnership facility. The 2010 Master Plan Update includes only two new facilities within 500 feet of residential areas: 1) the revised and relocated new M&O Facility (within 500 feet of dwellings at the southeast boundary) and 2) the Horticultural/Animal Science Facility (within 450 feet of homes at the west boundary). At the M&O Facility, all activities would be enclosed within the building and operations activities would not generate any unusually noise activities audible to nearby residents. Large material deliveries would be infrequent and no more than once a month on an average. These deliveries would occur between 9 a.m. and 6 p.m. The Horticultural/Animal Science Facility is a classroom building similar to existing buildings on the campus.

Construction noise is regulated under Section 41.40 of the Los Angeles Municipal Code. Construction activity is prohibited from causing "loud noises to the disturbance of persons occupying sleeping quarters" at night (defined as 9 p.m. to 7 a.m.). In addition, construction within 500 feet of residential buildings is prohibited on Sunday and during nighttime hours (defined as 6 p.m. to 8 a.m.) on Saturday or holidays. All construction contractors will be required to comply with these work-hour limitations. The construction noise mitigation measures previously described in the 2002 EIR would be carried forward for the proposed 2010 Master Plan Update.

2002 EIR Mitigation Measures

- **N-1** Noise control devices, such as equipment mufflers, enclosures, and barriers, shall be used where feasible and appropriate based on the noise sources and the distance to the closest sensitive receptors.
- **N-2** All sound-reducing devices and restrictions shall be maintained throughout the construction period.
- **N-3** Construction schedules shall be coordinated with academic affairs personnel to minimize noise impacts on students and faculty.

Regarding new facilities proposed under the 2010 Master Plan Update, permanent operational noise could be generated by heating, ventilation, and air-conditioning (HVAC) equipment and outdoor operations such as activity at loading docks. The proposed M&O facility would be configured to locate outdoor activities inward and away from any nearby residents. Noise from such equipment and operations is regulated under Section 112.02 of the Los Angeles Noise Ordinance. Daytime and nighttime noise levels at the boundaries of the closest parcels zoned for residential and commercial use are not allowed to exceed 5 A-weighted decibels (dBA) beyond ambient background levels. All noise-generating equipment installed at the campus would be required to comply with this regulation. Most of the new buildings are at least 1,000 feet from sensitive off-site residential receptors; therefore, in most cases, noise will not be an issue. Most currently available HVAC equipment is relatively quiet; therefore, it is unlikely to cause nighttime noise impacts, even at sensitive receptors (as close as 100 feet). However, some new buildings would be close to off-site residential areas and sensitive on-site school rooms; therefore, HVAC equipment would have the potential to cause noise impacts. Noise impacts would be reduced to less-than-significant levels by the added implementation of the new mitigation measures provided below.

N-4 Exterior noise sources associated with an individual new building or facility shall be controlled to achieve an aggregate noise source level of 62 dBA at 50 feet. That allowable noise emission ensures compliance with the daytime and nighttime exterior noise limits at the closest residential and commercial parcels outside the campus, as defined by Section 112.02 and Sections 111.02 and 111.03 of the Los Angeles Municipal Code. The upper-bound noise limit was calculated using the following assumptions:

-

⁹ City of Los Angeles. Los Angeles Municipal Code, Section 112.05.

Issues		Less-than- Significant		
		Impact with	Less-than-	
	Potentially	Mitigation	Significant	
	Significant	Incorporated	Impact	No Impact

- the closest off-campus residential area is 370 feet from any proposed facility (the horticulture/animal science facility),
- the lower bound allowable nighttime noise level at that residential area is 45 dBA (based on default ambient noise levels specified by the city noise ordinance), and
- the allowable lower-bound noise emission rate at the horticulture/animal science facility (to achieve the lower-bound ambient noise limit) is 62 dBA at 50 feet, assuming a sound propagation rate of 6 dBA per doubling of distance and not accounting for excess attenuation by barriers or ground absorption.

	b) Exposure of persons to or generation of excessive groundborne vibration or groundborne noise levels?		\boxtimes		
--	---	--	-------------	--	--

Less-than-Significant Impact with Mitigation Incorporated. The EIR for the 2002 Master Plan did not consider ground vibration or groundborne noise. A supplemental impact assessment is provided below.

The highest levels of ground vibration would be generated during temporary building demolition and building construction activity. It is anticipated that pile driving will not be required to construct new buildings. Given that assumption, vibration levels generated during building demolition and building construction are not expected to be discernible, even at nearby school buildings. The highest ground vibration levels are expected to be generated by jackhammers and hoe rams, which are used to demolish building foundations, and by vibratory rollers, which are used to level new parking lots. Ground vibration levels from such equipment generally dissipate to below discernible levels within 25 to 50 feet of the source. ¹⁰ It is unlikely that jackhammers and vibratory rollers would be used at such close distances for extended periods; therefore, in most cases, the vibration impacts would be indiscernible and less than significant. However, it is possible that a limited number of school buildings near future construction zones might contain research equipment that is exceptionally sensitive to vibration (e.g., electron microscopes). In those unusual circumstances, temporary ground vibration caused by construction activity might have the potential to disrupt research equipment. Vibration impacts from such unusual circumstances would be reduced to less-than-significant levels by implementation of the following mitigation measures:

- N-5 Use of vibration-generating construction equipment at new facilities shall be coordinated with Academic Affairs personnel to minimize potential vibration impacts on exceptionally sensitive research equipment. If requested by the Academic Affairs office, a construction vibration control study will be required for specific vibration-sensitive buildings. Vibration control measures could include the following:
 - preparation of a vibration control plan;
 - prediction of temporary vibration levels during construction, which will be compared to acceptable vibration levels for sensitive equipment;
 - specification of low-vibration construction equipment;
 - vibration monitoring before and during construction activity; and
 - coordination with research staff to temporarily discontinue use of sensitive equipment during critical construction activity.

Operation of the new buildings would not cause discernible ground vibration at any nearby dwellings or existing school buildings. Passenger cars, delivery trucks, and HVAC equipment used during normal operations cause negligible ground vibration.¹¹

There would be no impact from groundborne noise during construction or operation. This issue is typically important only in limited circumstances involving large (usually underground) vibration sources and exceptionally sensitive indoor use areas, (e.g., a new train tunnel underneath an existing concert hall). Construction and operation of the new buildings would not cause groundborne noise at nearby buildings.

_

¹⁰ Federal Transit Administration, 2006.

¹¹ Ibid.

Issues	Potentially Significant	Less-than- Significant Impact with Mitigation Incorporated	Less-than- Significant Impact	No Impact
c) A substantial permanent increase in ambient noise levels in the project vicinity above levels existing				
without the project?				

Less-than-Significant Impact with Mitigation Incorporated. There are two issues related to this impact:

- Noise increases at existing on-site and off-site receptors caused by HVAC equipment and other outdoor noise sources at new buildings. Details on the impact assessment and proposed mitigation are provided in response 11(a). The impact would be less than significant after mitigation is incorporated; and
- Increased traffic noise along off-site public streets serving the campus. This impact would be less than significant, and no mitigation is required. Details are provided below.

The EIR for the 2002 Master Plan included baseline monitoring results for representative homes and apartments. It concluded that the traffic volume increases associated with the 2002 Master Plan would not be high enough to cause a significant increase in traffic noise. However, the existing noise environment has changed since the previous EIR was certified because of the recent completion of the Orange Line. In addition, the proposed 2010 Master Plan Update, as described in the 2010 Master Plan Update, would increase student enrollment to a level above the number that was estimated under the 2002 Master Plan. For these reasons, the traffic noise impact assessment was updated to reflect the changed conditions.

The significance criteria used to assess traffic noise are the same as those described in the 2002 EIR. The *L.A. CEQA Thresholds Guide* (City of Los Angeles 2006) establishes noise compatibility criteria for various land uses, as listed in Table 13, below. Noise compatibility is based on the outdoor 24-hour Community Noise Exposure Level (CNEL).

The L.A. CEQA Thresholds Guide indicates that a significant noise increase would be triggered by either of the following conditions:

- If the noise level after project buildout triggers either the Normally Acceptable or Conditionally Acceptable categories, and the project-related noise increase is 5 dBA CNEL or greater; or
- If the noise level after project buildout triggers either the Normally Unacceptable or Clearly Unacceptable categories, and the project-related noise increase is 3 dBA CNEL or greater.

The EIR for the 2002 Master Plan included baseline noise monitoring at representative homes and businesses outside the campus. To support the 2010 Master Plan Update, noise monitoring was repeated at the same locations and at approximately the same time of day. The results of the supplemental 2009 baseline monitoring are shown in Table 14, below. Noise levels measured in September 2009 were lower than the noise levels measured in 2002.

The baseline noise monitoring consisted of short-term spot measurements taken during the mid-afternoon period when traffic noise levels are generally highest, while the land use compatibility categories are based on the 24-hour CNEL.

Issues		Less-than-		
		Significant		
		Impact with	Less-than-	
	Potentially	Mitigation	Significant	
	Significant	Incorporated	Impact	No Impact

Table 13: Community Noise Exposure Levels (Exterior) and Land Use Compatibility

	Community Noise Exposure Level, dBA						
Land Use	Normally Acceptable	Conditionally Acceptable	Normally Unacceptable	Clearly Unacceptable			
Single-Family Residence	50–60	55–70	70–75	Above 70			
Multi-Family Residence	50–65	60–70	70–75	Above 70			
Hotel/Motel	50–65	60–70	70–80	Above 80			
Auditorium	_	50–70	_	Above 65			
Sports Arena	_	50–75	_	Above 70			
Parks	50–70	_	67–75	Above 72			
Office Building/Commercial	50–70	67–77	Above 75	_			
Industrial/Manufacturing	50–75	70–80	Above 75	_			

Normally Acceptable: Development is acceptable.

Conditionally Acceptable: Noise abatement should be considered as part of the development.

Normally Unacceptable: Development should generally be discouraged. Clearly Unacceptable: Development should generally not be built. Source: City of Los Angeles, *L.A. CEQA Thresholds Guide*, 2006.

Table 14: Noise Measurements at Noise Sensitive Uses

Site Number	Location and Land Use	Noise Level Measured in 2002 (L _{eq} , dBA)	Time and Duration of the Supplemental Measurement	Supplemental Noise Levels (L _{eq} or CNEL, dBA) ^{1, 2}
R-1	De Soto Avenue, north of Victory Boulevard (Residential)	79	9/23/09, 16:50	69
R-2	Mason Street, north of Victory Boulevard (Residential)	76	9/23/09, 17:40	67
R-3	Victory Boulevard, east of Mason Street (Residential)	76	9/23/09, 18:10	69
R-4	Winnetka Avenue, at the Adult Technical School (Commercial)	78	9/23/09, 18:50	68
R-5	Winnetka Avenue, north of Oxnard Street (Residential)	80	9/23/09, 19:25	70
R-6	Oxnard Street, east of De Soto Avenue (Residential)	75	9/23/09, 20:20	71

L_{eq} = noise level equivalent.

Source: ICF Jones & Stokes, 2009.

 $^{^{\}rm 1}$ $L_{\rm eq}$ noise reading during the measurement duration.

 $^{^{\}rm 2}$ Mid-afternoon $L_{\rm eq}$ levels assumed to be similar to 24-hour CNEL levels.

Issues	Potentially Significant	Less-than- Significant Impact with Mitigation Incorporated	Less-than- Significant Impact	No Impact
Because the dominant noise measured during the supplemental mowere taken near the peak noise hour, it can generally be assumed to the 24-hour CNEL (Federal Transit Administration 2006). Given that a to determine land use noise compatibility categories at each measure of September 2009, were high enough to trigger the Normally Unaccording to the $L.A.\ CEQA\ Thresholds\ Guide$, a significant impact (peak-hour L_{eq} or CNEL) or more. This is the same traffic noise impact	that the meast assumption, the ement location ceptable or Cle would be trigg	ured L _{eq} noise ne measured L n. In all cases, early Unaccep gered by a traf	levels are rou eq noise levels the existing no table categorie fic noise incre	ughly equal to s can be used bise levels, as es. Therefore, ease of 3 dBA
The 2002 EIR demonstrated that to trigger the 3 dBA traffic noise in would have to cause a project-related traffic volume increase of 100 volume minus the 2015 cumulative no-project base volume). The for Update would be much lower than that threshold. The updated traffic recast increases in peak-hour traffic volumes at the most heavily corresponds to traffic noise increases of less than 1 dBA. Given this a be less than significant, and no mitigation is required.	0% (defined a recast traffic in raffic report (For traveled road)	as the 2015 cu creases cause Fehr and Pee dways would	umulative with ed by the 2010 rs 2010) indic be only 1% to	-project traffic O Master Plan cates that the o 13%, which
d) A substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?		\boxtimes		
Less-than-Significant Impact with Mitigation Incorporated. Terbuildings could result during construction of new buildings as part of that this impact would be less than significant after implementation of supplemental analysis are the same. Details regarding the impamitigation measures are presented in response 11(a).	the 2010 Mast of construction	er Plan Updat nnoise mitigati	e. The 2002 E ion. The conc	IR concluded lusions of this
e) For a project located within an airport land use plan or, where such a plan has not been adopted, within 2 miles of a public airport or public use airport, would the project expose people residing or working in the project area to excessive noise levels?			\boxtimes	
Less-than-Significant Impact. The 2002 EIR did not consider pote than 5 miles west-southwest of the closest general aviation airport (closest commercial airport (Bob Hope/Burbank Airport). The Van campus is nearly due west of the airport. Therefore, there is no pote aircraft noise. No mitigation is required.	Van Nuys Air Nuys Airport	port) and more runway is ori	e than 12 mile ented north/se	es west of the outh, and the
f) For a project within the vicinity of a private airstrip, would the project expose people residing or working in the project area to excessive noise levels?				
No Impact. The campus is more than 5 miles from the nearest gen	neral aviation	airport (Van N	uys Airport).	Γherefore, the

private airport would cause no noise impact at campus buildings. No mitigation is required.

Issues	Potentially Significant	Less-than- Significant Impact with Mitigation Incorporated	Less-than- Significant Impact	No Impact
13. POPULATION AND HOUSING. Would the project:				
a) Induce substantial population growth in an area, either directly (for example, by proposing new homes and businesses) or indirectly (for example, through extension of roads or other infrastructure)?			\boxtimes	
Less-than-Significant Impact. The 2002 FEIR found that the productive or indirectly. During construction, the project would employ from the work site and not relocate their households. The Lost construction labor from which to draw. With completion of the program project would increase by 168. The previously planned science employees; however, because these partnerships are no longer partnerships are no longer partnerships are no longer partnerships are population would be less than what was previously distributed in pacts related to population growth would occur; as such, impacts Plan Update would remain the same.	workers who an Angeles mage perts describe partnerships want of the proplescribed. The	would more the tropolitan and in the 2002 would have also sed 2010 Miles 2002 EIR four	than likely correa has a land the number of	nmute to and arge pool of per of College the number of date, impacts nan-significant
b) Displace substantial numbers of existing housing, necessitating the construction of replacement housing elsewhere?				\boxtimes
No Impact. The 2002 EIR found that housing would not be displace 2010 Master Plan Update would not change this conclusion because No impact would occur.				
c) Displace substantial numbers of people, necessitating the construction of replacement housing elsewhere?				\boxtimes
No Impact. The 2002 EIR found that people would not be displace Master Plan Update would not change this conclusion because it als thereby necessitating the construction of replacement housing. There	o would not di	splace any pe		
14. PUBLIC SERVICES. Would the project result in substant the provision of new or physically altered government facilities, the construction of which could camaintain acceptable service ratios, response times, or other services:	ities or the r use significa	need for new ant environm	or physical nental impac	ly altered ts, to
a) Fire protection?		\boxtimes		
Less-than-Significant Impact with Mitigation Incorporated	. The 2002	FEIR found	that less-tha	n-significant

Less-than-Significant Impact with Mitigation Incorporated. The 2002 FEIR found that less-than-significant impacts related to fire services would occur from implementation of the master plan. According to the 2002 EIR, the 2002 Master Plan proposed approximately 500,000 total gross square feet of new building space and 400 to 450 housing units. As shown in Table 3 the 2010 Master Plan Update, approximately 285,451 square feet of new building space would be provided. Therefore, the 2010 Master Plan Update would provide less new building space when compared to the 2002 Master Plan.

Because buildout under the proposed 2010 Master Plan Update would not increase the number of students beyond the number forecast under the 2002 EIR (see Table 2) and because the science public/private partnership projects described in the 2002 EIR are no longer included as part of the proposed 2010 Master Plan Update, impacts would not be greater than what was described in the 2002 EIR. Furthermore, the removal of the previously planned student housing projects would reduce the number of associated emergency calls to the fire department, calls that were originally anticipated as part of the 2002 Master Plan.

Issues	Potentially	Less-than- Significant Impact with Mitigation	Less-than- Significant	
	Folentially	wiitigation	Significant	
	Significant	Incorporated	Impact	No Impact

Temporary construction would affect fire department access to the College. This impact would remain under the proposed 2010 Master Plan Update because of street closures or other access impairments. The mitigation measures described in the 2002 EIR would be carried forward as part of the proposed 2010 Master Plan Update. Because no new impacts would be created, impacts would remain less than significant.

2002 EIR Mitigation Measures

- **FPS-1** The College shall consult with the city engineer and the fire department regarding appropriate standards (e.g., lane widths, grades, cut corners, etc.) for private streets and entry gates to ensure adequate access for fire department vehicles and equipment.
- **FPS-2** All landscaping shall use fire-resistant plants and materials.
- **FPS-3** Sprinkler systems shall be required throughout any structure to be built, in accordance with state codes and standards established by the State of California, Division of the State Architect, State Fire Marshal.
- **FPS-4** The revised project shall comply with all applicable codes and regulations administered by the State of California, Division of the State Architect, and State Fire Marshal.

b) Police protection?				
-----------------------	--	--	--	--

Less-than-Significant Impact with Mitigation Incorporated. Police protection services for the LACCD are provided by the Los Angeles County Sheriff's Department (LASD). The 2002 EIR found that less-than-significant impacts related to police services would result from the master plan with mitigation incorporated. As noted in the response to 13(a), above, student enrollment in the buildout year (2015) under the proposed 2010 Master Plan Update would not be greater than the enrollment figure projected in the 2002 EIR. Furthermore, removal of the previously planned student housing projects and the science public/private partnerships would reduce the number of associated emergency calls to the police department, calls that were originally anticipated as part of the 2002 Master Plan. Temporary construction impacts would remain under the proposed 2010 Master Plan Update because of street closures, which could diminish.. The mitigation measures previously described in the 2002 EIR would be carried forward as part of the proposed 2010 Master Plan Update. Because no new impacts would be created, impacts would remain less than significant with mitigation incorporated.

2002 EIR Mitigation Measures

- **PPS-1** Pierce College shall implement security features (i.e., improved lighting, improved landscaping, and additional security phones) as part of the proposed projects described in the master plan.
- **PPS-2** Pierce College shall design and implement a Special Event Security Plan, in coordination with the Los Angeles County Sheriff's Department and the Los Angeles Police Department, for the new events center. Issues addressed may include security needs, emergency evacuation procedures, and money handling issues.

c)	Schools?			\boxtimes	
----	----------	--	--	-------------	--

Less-than-Significant Impact. Pierce College is located in the Los Angeles Unified School District's (LAUSD's) District C, which covers an area of approximately 70 square miles. This district is located in the southern portion of the west and central portions of the San Fernando Valley. District C includes the following communities: Encino, Reseda, Sherman Oaks, Tarzana, Van Nuys, Warner Center, and Winnetka as well as portions of Studio City, Valley Village, and Woodland Hills. The 2002 EIR found that although increases in student enrollment would have occurred because of development expected as part of the master plan, they would not have significantly affected any one school within the district and would not have over-burdened the school system. The 2002 Master Plan included the development of 400 to 450 housing units, which will no longer be carried forward as part of the

Issues	Potentially Significant	Less-than- Significant Impact with Mitigation Incorporated	Less-than- Significant Impact	No Impact	
proposed 2010 Master Plan Update. Additionally, the science 2002 Master Plan, would have increased the number of emplecause these partnerships are no longer being carried forward occur as part of the proposed 2010 Master Plan Update. Impact remain less than significant.	ployees as v I, these previ	vell as resid ously estima	ents in the ted impacts v	project area. will no longer	
d) Parks?			\boxtimes		
Less-than-Significant Impact. The 2002 EIR found that althounegatively affect the recreational resources of the project area osignificant. Through the removal of the student housing eleminpacts originally anticipated from increased student and emproposed 2010 Master Plan Update. As such, impacts would be less than significant.	r surrounding nent and sor ployee use o	garea, and in me of the pu of parks wou	npacts would ublic/private lld be reduce	be less than partnerships, ed under the	
e) Other public facilities?				\boxtimes	
No Impact. The 2002 EIR provided no impact analysis pertaining to other public facilities. However, because the campus already provides libraries, health care facilities, student services, etc., it is assumed that these facilities were regarded as incurring no impacts under the 2002 Master Plan. Because the proposed 2010 Master Plan Update would no longer include the student housing element and some of the public/private partnerships, any impacts would be less than previously anticipated. Therefore, there would be no impact. 15. RECREATION. a) Would the project increase the use of existing neighborhood or regional parks or other recreational focilities such that substantial physical deterioration of					
facilities such that substantial physical deterioration of the facility would occur or be accelerated?					
Less-than-Significant Impact. The 2002 FEIR found that deemployees, recreational facilities and parks located in the vicinity would not experience an increase in use that would accelerate or plan would have included projects that would have renovated facilities on the campus. Also, public/private partnerships would including the horticulture area and quad area (creating a nestudents and employees with additional green spaces. The progrenovation and modernization of the existing recreational and planned public/private partnership projects would not be carried update. Although the removal of the partnership projects would created, it would not reduce any of the existing recreational using the previously anticipated and would remain less that	y of Pierce C leterioration. and modern ald have enh w botanical oposed 2010 athletic facili forward as p d mean that uses at the o	ollege would Implementati ized existing anced existi garden), wh Master Planties; however art of the preadditional gr	not be overb fon of the pre recreational ng areas of ich would ha Update still r, some of th oposed 2010 een spaces v	urdened and vious master and athletic the campus, ave provided includes the ne previously Master Plan would not be	
b) Does the project include recreational facilities or require the construction or expansion of recreational facilities that might have an adverse physical effect on the environment?			\boxtimes		

Less-than-Significant Impact. The previous EIR found that no significant impacts would occur from the renovation and modernization of the existing recreational and athletic facilities, planned for completion in October of this year. Additionally, some of the public/private partnerships previously planned would not be carried forward as part of the proposed 2010 Master Plan Update. No new or expanded recreational facilities are planned as part of the proposed 2010 Master Plan Update; therefore, impacts would remain less than significant.

Issues		Less-than- Significant Impact with Mitigation	Less-than- Significant	
	Significant	Incorporated	Impact	No Impact

16. TRANSPORTATION/TRAFFIC. Would the project:		
a) Cause an increase in traffic that is substantial in relation to the existing traffic load and capacity of the street system (i.e., result in a substantial increase in either the number of vehicle trips, the volume-to-capacity ratio on roads, or congestion at intersections)?		

Less-than-Significant Impact with Mitigation Incorporated. Fehr and Peers prepared a traffic and parking study for the 2010 Master Plan Update in January 2010. Because the 2002 EIR analyzed projects only until 2010, a new traffic analysis was required to study impacts up to 2015, which is the horizon year for the 2010 Master Plan Update. The 2010 report is included in its entirety as an appendix to this document. The study analyzed potential revised project-generated traffic impacts on the street and highway system surrounding and serving the Pierce College campus. The following traffic scenarios were analyzed in the study:

- Existing (2009) Conditions The analysis of existing traffic conditions provided a basis for the study. The existing-conditions analysis included an assessment of streets, traffic volumes, operating conditions, transit services, and on-campus parking conditions:
- Year 2015 Cumulative-Base (No-Project) Conditions The objective of this scenario was to project the
 future operating conditions that could be expected to result from regional growth and related projects in the
 vicinity of the project site, without consideration of the proposed 2010 Master Plan Update; and
- Year 2015 Cumulative-Plus-Project Conditions The objective of this scenario was to identify the potential impacts of the proposed 2010 Master Plan Update on future operating conditions, with traffic expected to be generated by buildout of the proposed 2010 Master Plan Update added to the base traffic forecasts.

The study evaluated the potential for traffic impacts at 32 intersections in the vicinity of the Pierce College campus during the weekday AM and PM peak hours. The study relied on established Los Angeles Department of Transportation (LADOT) threshold criteria, which are used to determine if a project will have a significant traffic impact at a specific intersection. According to LADOT criteria, a project impact would be considered significant if the conditions in Table 15 are met.

Table 15: Los Angeles Department of Transportation Threshold Criteria

	Intersection Condition with Project Traffic	Project-Related Increase in V/C Ratio						
LOS	V/C Ratio							
С	> 0.70–0.80	Equal to or greater than 0.04						
D	> 0.80–0.90	Equal to or greater than 0.02						
E, F	> 0.90	Equal to or greater than 0.01						
Note: LOS = level of service; V/C = volume to capacity.								

Existing Conditions

Source: Fehr and Peers, 2010.

Table 16 summarizes the existing AM and PM peak-hour volume-to-capacity (V/C) ratios and corresponding levels of service at each of the study intersections. As can be seen, 11 of the 32 intersections currently operate at LOS E or F during the AM and/or PM peak hours. These intersections are as follows:

Issues		Less-than- Significant		
		Impact with	Less-than-	
	Potentially	Mitigation	Significant	
	Significant	Incorporated	Impact	No Impact

- De Soto Avenue and Saticoy Street,
- De Soto Avenue and Sherman Way,
- De Soto Avenue and Vanowen Street,
- Topanga Canyon Boulevard and Victory Boulevard,
- De Soto Avenue and Victory Boulevard,
- Winnetka Avenue and Victory Boulevard,
- Corbin Avenue and Victory Boulevard,
- Tampa Avenue and Victory Boulevard,
- Wilbur Avenue and Victory Boulevard,
- Reseda Avenue and Victory Boulevard, and
- Winnetka Avenue and Ventura Boulevard.

The remaining study intersections operate at fair to good levels of service (LOS D or better) during both the AM and PM peak hours.

2015 Cumulative Base Conditions – Without Proposed 2010 Master Plan Update

The traffic analysis prepared for the 2010 Master Plan Update analyzed potential future traffic conditions under 2015 cumulative base conditions, assuming no growth on the Pierce College campus between the 2002 FTE baseline and 2015. Table 16, included below, summarizes these results.

Table 16: Existing (2008–2009) Intersection Levels of Service

		AM Peak Hour		PM Pea	ak Hour
	Intersection	V/C	LOS	V/C	LOS
*1.	De Soto Av and Saticoy St	0.870	D	0.905	E
*2.	Mason Av and Saticoy St	0.834	D	0.789	С
*3.	Winnetka Av and Saticoy St	0.775	С	0.823	D
**4.	De Soto Av and Sherman Way	0.735	С	0.958	Е
**5.	Mason Av and Sherman Way	0.710	С	0.627	В
**6.	Winnetka Av and Sherman Way	0.810	D	0.814	D
**7.	De Soto Av and Vanowen St	0.815	D	0.936	E
*8.	Mason Av and Vanowen St	0.805	D	0.681	В
*9.	Winnetka Av and Vanowen St	0.874	D	0.875	D
**10.	Shoup Av and Victory Blvd	0.865	D	0.874	D
**11.	Topanga Canyon Blvd and Victory Blvd	0.679	В	0.910	E
**12.	Canoga Av and Victory Blvd	0.607	В	0.861	D
**13.	De Soto Av and Victory Blvd	0.836	D	1.004	F
**14.	Mason Av and Victory Blvd	0.752	С	0.719	С

Issues		Less-than-		
		Significant		
		Impact with	Less-than-	
	Potentially	Mitigation	Significant	
	Significant	Incorporated	Impact	No Impact

		AM Pe	ak Hour	PM Pea	ak Hour
	Intersection	V/C	LOS	V/C	LOS
**15.	Winnetka Av and Victory Blvd	0.982	Е	0.912	E
**16.	Topham St and Victory Blvd	0.243	Α	0.200	А
**17.	Corbin Av and Victory Blvd	0.907	E	0.925	E
**18.	Tampa Av and Victory Blvd	0.930	E	1.056	F
**19.	Wilbur Av and Victory Blvd	0.975	Е	0.852	D
**20.	Reseda Blvd and Victory Blvd	0.949	Е	0.970	Е
**21.	De Soto Av and El Rancho Dr	0.429	А	0.394	А
**22.	De Soto Av and Erwin St	0.612	В	0.451	А
**23.	Winnetka Av and Calvert St	0.545	А	0.430	А
**24.	De Soto Av and Oxnard St	0.737	С	0.625	В
**25.	Winnetka Av and Oxnard St	0.763	С	0.640	В
**26.	De Soto Av and Burbank Blvd West	0.564	А	0.583	А
**27.	De Soto Av and U.S. 101 WB Ramps	0.618	В	0.649	В
**28.	De Soto Av and U.S. 101 EB Ramps	0.729	С	0.583	А
**29.	De Soto Av and Ventura Blvd	0.764	С	0.662	В
**30.	Winnetka Av and U.S. 101 WB Ramps	0.553	Α	0.504	А
**31.	Winnetka Av and U.S. 101 EB Ramps	0.685	В	0.666	В
**32.	Winnetka Av and Ventura Blvd	0.885	D	0.911	E

Notes:

EB = eastbound; WB = westbound.

Source: Fehr and Peers, 2010.

^{*} Intersection is currently operating under ATSAC system.

^{* *}Intersection is currently operating under ATCS system.

Issues	Potentially	Less-than- Significant Impact with Mitigation	Less-than- Significant	
	Significant	Incorporated	Impact	No Impact

The following 13 study intersections are projected to operate at LOS E or F during one or both of the peak hours under 2015 cumulative base conditions (see Table 17):

- De Soto Avenue and Saticoy Street,
- De Soto Avenue and Sherman Way,
- Winnetka Avenue and Vanowen Street,
- Shoup Avenue and Victory Boulevard
- Topanga Canyon Boulevard and Victory Boulevard,
- · Canoga Avenue and Victory Boulevard,
- De Soto Avenue and Victory Boulevard,
- Winnetka Avenue and Victory Boulevard,
- Corbin Avenue and Victory Boulevard
- Tampa Avenue and Victory Boulevard,
- · Wilbur Avenue and Victory Boulevard,
- · Reseda Avenue and Victory Boulevard, and
- Winnetka Avenue and Ventura Boulevard.

Table 17 reveals a slight deterioration in future operating conditions when compared with existing conditions, with 11 of the intersections operating at LOS E or F during one or both of the peak hours. Thus, background traffic growth and traffic generated by related projects would have some impact on operating conditions in the study area even without consideration of potential growth on the Pierce College campus.

2015 Cumulative Conditions – With Proposed 2010 Master Plan Update

The traffic study analyzed cumulative-plus-project traffic volumes to determine potential future operating conditions and traffic impacts with the addition of incremental project-generated traffic associated with buildout of the master plan through 2015 (see Table 17).

As indicated in Table 17, 13 of the study intersections are projected to operate at LOS E or F during one or both peak hours under cumulative-plus-project conditions. Application of the City of Los Angeles' significance criteria indicate that the project would create significant traffic impacts at one study intersection:

Winnetka Avenue and Victory Boulevard.

This impact would be generated by the estimated general growth in academic-related traffic to/from the campus between the 2002 campus base year and the 2015 master plan buildout year. However, the mitigation below would reduce impacts at the affected intersection.

Table 17: Intersection Level of Service Analysis – Cumulative Base and Cumulative-Plus-Project Conditions

			Cumulative Base 2015			Cumulative + Project 2015		Significant Project	With-P Mitiga		Project Increase	Residual
	Intersection	Peak Hour	V/C	LOS	V/C	LOS	in V/C	Impact	V/C	LOS	in V/C	Impacts
*1.	De Soto Av and	AM	0.933	Е	0.935	Е	0.002	NO				
	Saticoy St	PM	0.984	Е	0.987	Е	0.003	NO				
*2.	Mason Av and	AM	0.885	D	0.892	D	0.007	NO				
	Saticoy St	PM	0.839	D	0.843	D	0.004	NO				
*3.	Winnetka Av and	AM	0.829	D	0.833	D	0.004	NO				
Saticoy St	PM	0.877	D	0.879	D	0.002	NO					
**4.	De Soto Av and	AM	0.796	С	0.800	С	0.004	NO				
;	Sherman Way	PM	1.041	F	1.043	F	0.002	NO				
**5.	**5. Mason Av and Sherman Way	AM	0.755	С	0.764	С	0.009	NO				
		PM	0.672	В	0.676	В	0.004	NO				
**6.	Winnetka Av and Sherman Way	AM	0.872	D	0.878	D	0.006	NO				
		PM	0.872	D	0.875	D	0.003	NO				
**7.	De Soto Av and	AM	0.852	D	0.853	D	0.001	NO				
	Vanowen St	PM	0.876	D	0.878	D	0.002	NO				
*8.	Mason Av and	AM	0.848	D	0.859	D	0.011	NO				
	Vanowen St	PM	0.727	С	0.732	С	0.005	NO				
*9.	Winnetka Av and	AM	0.931	Е	0.938	Е	0.007	NO				
	Vanowen St	PM	0.939	Е	0.945	Е	0.006	NO				
**10.	Shoup Av and	AM	0.943	Е	0.947	Е	0.004	NO				
	Victory Blvd	PM	0.875	D	0.879	D	0.004	NO				
**11.	Topanga Cyn Blvd	AM	0.744	С	0.748	С	0.004	NO				
	and Victory Blvd	PM	0.975	Е	0.981	Е	0.006	NO				

			Cumulati Base 201		Cumula Project		Project Increase	Significant Project	With-P Mitiga		Project Increase	Residual
	Intersection	Hour	V/C	LOS	V/C	LOS	in V/C	Impact	V/C	LOS	in V/C	Impacts
**12.	Canoga Av and	AM	0.705	С	0.712	С	0.007	NO				
	Victory Blvd	PM	0.957	Е	0.963	Е	0.006	NO				
**13.	De Soto Av and	AM	0.798	С	0.808	D	0.010	NO				
	Victory Blvd	PM	0.987	Е	0.993	Е	0.006	NO				
**14.	Mason Av and	AM	0.701	С	0.706	С	0.005	NO				
	Victory Blvd	PM	0.662	В	0.674	В	0.012	NO				
**15.	Winnetka Av and	AM	1.051	F	1.067	F	0.016	YES	0.958	Е	-0.093	NO
	Victory Blvd	PM	0.971	Е	0.988	Е	0.017	YES	0.944	Е	-0.027	NO
**16.	Topham St and	AM	0.149	Α	0.155	Α	0.006	NO				
	Victory Blvd	PM	0.107	Α	0.111	Α	0.004	NO				
**17.	Corbin Av and	AM	0.974	Е	0.981	Е	0.007	NO				
	Victory Blvd	PM	1.006	F	1.010	F	0.004	NO				
**18.	Tampa Av and	AM	1.003	F	1.007	F	0.004	NO				
	Victory Blvd	PM	1.146	F	1.149	F	0.003	NO				
**19.	Wilbur Av and	AM	1.066	F	1.067	F	0.001	NO				
	Victory Blvd	PM	0.932	Е	0.934	Е	0.002	NO				
**20.	Reseda Blvd and	AM	1.030	F	1.035	F	0.005	NO				
	Victory Blvd	PM	1.059	F	1.061	F	0.002	NO				
**21.	De Soto Av and	AM	0.467	Α	0.468	Α	0.001	NO				
	El Rancho Dr	PM	0.416	Α	0.430	Α	0.014	NO				
**22.	De Soto Av and	AM	0.678	В	0.678	В	0.000	NO				
	Erwin St	PM	0.512	Α	0.515	Α	0.003	NO			_	_

		Peak	Cumul Base		Cumula Project		Project Increase	Significant Project	With-P Mitiga		Project Increase	Residual
	Intersection	Hour	V/C	LOS	V/C	LOS	in V/C	Impact	V/C	LOS	in V/C	Impacts
**23.	Winnetka Av and	AM	0.555	Α	0.582	Α	0.027	NO				
	Calvert St	PM	0.453	Α	0.463	Α	0.010	NO				
**24.	De Soto Av and	AM	0.813	D	0.815	D	0.002	NO				
	Oxnard St	PM	0.691	В	0.694	В	0.003	NO				
**25.	Winnetka Av and	AM	0.818	D	0.824	D	0.006	NO				
	Oxnard St	PM	0.680	В	0.689	В	0.009	NO				
**26.	De Soto Av and	AM	0.631	В	0.633	В	0.002	NO				
	Burbank Blvd West	PM	0.641	В	0.644	В	0.003	NO				
**27.	De Soto Av and	AM	0.683	В	0.686	В	0.003	NO				
	U.S. 101 WB Ramps	PM	0.708	С	0.711	С	0.003	NO				
**28.	De Soto Av and	AM	0.795	С	0.797	С	0.002	NO				
	U.S. 101 EB Ramps	PM	0.641	В	0.643	В	0.002	NO				
**29.	De Soto Av and	AM	0.832	D	0.835	D	0.003	NO				
	Ventura Blvd	PM	0.732	С	0.733	С	0.001	NO				
**30.	Winnetka Av and	AM	0.584	Α	0.594	Α	0.010	NO				
	U.S. 101 WB Ramps	PM	0.534	Α	0.545	Α	0.011	NO				
**31.	Winnetka Av and	AM	0.729	С	0.737	С	0.008	NO				
	U.S. 101 EB Ramps	PM	0.701	С	0.713	С	0.012	NO				
**32.	Winnetka Av and	AM	0.962	Е	0.962	Е	0.000	NO				
	Ventura Blvd	PM	0.992	Е	0.992	Е	0.000	NO				

Notes:

Source: Fehr and Peers, 2010.

^{*} Intersection is currently operating under ATSAC system.

^{**} Intersection is currently operating under ATCS system.

Issues		Less-than- Significant Impact with	Less-than-	
	Potentially	Mitigation	Significant	
	Significant	Incorporated	Impact	No Impact

Mitigation Measures

The traffic analysis prepared for the proposed update identified the following mitigation measure to reduce impacts on the affected intersection, which is identical to the mitigation measure for this intersection in the 2002 FEIR. (See Table 3-49 No. 15 from the 2002 FEIR). The following physical and/or operational improvements shall be implemented at the affected intersection:

TR-1 Winnetka Avenue and Victory Boulevard. Intersection impacts may be mitigated during both peak periods with the provision of dual left-turn lanes on both the eastbound and westbound approaches on Victory Boulevard. This mitigation will require the acquisition of 4 feet of right-of-way from the north side of Victory Boulevard, east and west of Winnetka Avenue. The mitigation will also require the removal of approximately 32 on-street parking spaces along the eastbound approach and departure of Victory Boulevard on either side of Winnetka Avenue. This will result in changing existing lane configurations for both the westbound and eastbound approaches on Victory Boulevard at Winnetka Avenue from one left-turn lane, two through lanes, and one shared through/right-turn lane to two left-turn lanes, two through lanes, and one shared through/right-turn lane. (A figure to illustrate the proposed intersection mitigation is included in Appendix C.)

The proposed mitigation is identified as cumulative mitigation in the Warner Center Specific Plan (WCSP) Transportation Improvement Mitigation Program (TIMP). The WCSP TIMP states that future intersection improvements are to be funded, in part, by Warner Center Transportation Impact Assessment (TIA) fees from development within Warner Center. However, these improvements are not fully funded by the Warner Center TIA fee because the WCSP determined that a portion of the need for these improvements would be generated by existing traffic and future development in the area outside of Warner Center (such as growth at Pierce College).

Residual Impacts

Implementation of mitigation measure TR-1 would fully mitigate the revised project's impacts at the affected intersection. Thus, with the proposed intersection improvements identified herein, the intersection impacts would be less than significant.

b) Exceed, either individually or cumulatively, a level	 		
of service standard established by the county congestion			
management agency for designated roads or highways?	 	<u>—</u>	

Less-than-Significant Impact with Mitigation Incorporated. The traffic and parking analysis conducted by Fehr and Peers identified two Congestion Management Program (CMP) arterial monitoring locations where the proposed 2010 Master Plan Update may add 50 or more trips per hour:

- Topanga Canyon Boulevard and Victory Boulevard, and
- Winnetka Boulevard and Victory Boulevard.¹³

¹² Kaku Associates Inc. 2000. Draft Transportation Technical Report for the Warner Center Specific Plan Transportation Improvement and Management Program Restudy and Supplemental Environmental Impact Report. October.

¹³ Fehr and Peers. 2010. *Traffic and Parking Study for the Pierce College Facilities Master Plan Update Environmental Impact Report.* January.

Issues	Potentially Significant	Less-than- Significant Impact with Mitigation Incorporated	Less-than- Significant Impact	No Impact
Under 2015 conditions, the proposed 2010 Master Plan Update the two CMP arterial monitoring intersections: Winnetka Avenu of intersection mitigation measure TR-1, described in respons less-than-significant levels.	e/Victory Box	ulevard. How	ever, with im	plementation
Two other study intersections, Winnetka Boulevard/Ventura Boare also CMP arterial monitoring intersections. However, accommodate Plan Update, fewer than 50 project trips are projected to hours. Therefore, CMP analysis of these intersections was not re-	ording to the traverse the	traffic analys	sis prepared	for the 2010
In addition, one CMP mainline freeway monitoring location (U.S where the proposed 2010 Master Plan Update may add 150 or the traffic analysis, the proposed 2010 Master Plan Update is e the segment of U.S. 101 east of Winnetka Avenue.	more trips pe	er hour in eith	ner direction.	According to
Given the CMP significance criteria, no significant impact is proposed of Winnetka Avenue under the proposed 2010 Master Plan Update is expected to contribute the greatest number of new project's impact at this location would not be significant, the elsewhere on the freeway system. This would be considered a least thin the significant impact at the system.	n Update. Be w trips to thi revised proje	cause the project segment, sect would not	oposed 2010 and because have signifi	Master Plan the revised
Mitigation Measures				
The mitigation measure related to the Winnetka Avenue/Victory reduce impacts on CMP intersections.	Boulevard in	tersection in r	esponse 15(a	a) would also
Residual Impacts				
Implementation of mitigation measures would reduce traffic impa	acts to less-th	nan-significan	t levels.	
c) Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that result in substantial safety risks?				
No Impact. The proposed 2010 Master Plan Update would u conditions, including student enrollment. The 2010 Master Frenovation and demolition projects. The proposed 2010 Master traffic patterns or result in any air safety risks. The proposed buildings that would require air traffic to be rerouted. No impact in	Plan Update er Plan Upda I 2010 Maste	would includate would not er Plan Upda	de new cons result in a d	struction and change in air
d) Substantially increase hazards related to a design feature (e.g., sharp curves or dangerous intersections) or incompatible uses (e. g., farm equipment)?				
No Impact. See response 15(c), above. Implementation of th projects proposed under the 2010 Master Plan Update would rincompatible uses. No impact would occur.				
¹⁴ Ibid.				

Issue	es	Potentially Significant	Less-than- Significant Impact with Mitigation Incorporated	Less-than- Significant Impact	No Impact
e)	Result in inadequate emergency access?			\boxtimes	

Less-than-Significant Impact. Existing vehicular access to the Pierce College campus is available from four access points, as described below.

- Brahma Drive Brahma Drive is an internal street that provides access from Winnetka Avenue on the east side of the campus. Brahma Drive intersects Winnetka Avenue opposite Calvert Street; its intersection with Winnetka Avenue/Calvert Street is controlled by a traffic signal. On campus, Brahma Drive provides access to Lot 1 and connects to Stadium Way, which, in turn, ultimately connects to Mason Street.
- Mason Street Mason Street is an internal street that provides access from Victory Boulevard on the north side of the campus. Mason Street intersects Victory Boulevard opposite Mason Avenue; its intersection with Victory Boulevard is signalized. On campus, Mason Street provides access to parking lot 7. It then intersects with Olympic Drive and El Rancho Drive and continues as Stadium Way, ultimately connecting with Brahma Drive.
- El Rancho Drive El Rancho Drive is an internal street that provides access from a signalized intersection
 with De Soto Avenue on the west side of the campus. On campus, El Rancho Drive connects to Mason
 Street/Stadium Way.
- Lot 7 Driveway In addition to the three signalized access points described above, there is an unsignalized driveway from parking lot 7, leading directly to Victory Boulevard east of Mason Avenue.

Additional internal streets that provide circulation on the campus include the following:

- Olympic Drive Olympic Drive runs along the south side of parking lot 7 and has a security gate at the east end of the lot. Beyond the security gate, it continues into the campus core, becoming part of the internal system, with a second gate near the sheriff's substation.
- Stadium Way Stadium Way is the primary through route around the south side of the campus core. It
 connects Brahma Drive with Mason Street and El Rancho Drive and provides access to Shepard Stadium
 and several student parking lots.

Proposed vehicular access under the 2010 Master Plan Update would not change the existing access, as described above. Similarly, emergency access to the campus would not change under the 2010 Master Plan Update. However, as described earlier, diminished access to the College would occur temporarily during construction activities (see Public Services, responses 13(a) and 13(b), above). Projects included under the proposed update would comply with all applicable City of Los Angeles codes and regulations related to emergency access (see also Hazards and Hazardous Materials, response 7(g), for a mitigation measure related to emergency access.)

Implementation of the 2010 Master Plan Update is not anticipated to result in a permanent impact related to inadequate emergency access. Mitigation measures included in the 2002 EIR have also been included in this document. This would be considered a less-than-significant impact.

f) Result in inadequate parking capacity?				
---	--	--	--	--

No Impact. A traffic and parking impact analysis was conducted for the proposed 2010 Master Plan Update by Fehr and Peers in January 2010. The 2010 Master Plan Update would affect future parking at the College. The major proposed changes would include the following:

- Of the seven main student lots, most would be retained in roughly their existing size, while parking lot 6
 would be reduced in size;
- Certain smaller existing parking lots would be eliminated, generally in or adjacent to the core area of the campus at locations where future buildings would be constructed;

Issues	Potentially	Less-than- Significant Impact with Mitigation	Less-than- Significant	
	rotentially	wiitigation	Significant	
	Significant	Incorporated	Impact	No Impact

- Curb parking on many internal campus streets would be eliminated (including El Rancho Drive, Mason Street, Olympic Drive, Pierce Lane, and the auto shop roadway). Curb parking would remain on Stadium Way, including the portion to be realigned with Brahma Drive; and
- Approximately 40 new spaces would be provided at the new maintenance and operations facility.

Under existing conditions, the campus has approximately 4,116 on-site and off-site parking spaces. Of these spaces, approximately 3,845 are located on-site in parking facilities, while approximately 271 are off-campus spaces on surrounding streets.

The 2010 Master Plan Update proposes some minor changes to the future parking supply serving the College. There would be a loss of approximately 32 on-street parking spaces as a result of proposed mitigation measure TR-1 near the intersection of Victory Boulevard and Winnetka Avenue. Therefore, under the 2010 Master Plan Update, 4,084 parking spaces would be available. According to the parking study prepared for the proposed 2010 Master Plan Update, the estimated future supply of parking available to support activities on campus (3,958 spaces) would be adequate to accommodate projected peak parking needs at buildout (2,887 spaces for weekdays and 2,226 spaces for weeknights). Surpluses of about 1,200 (weekday) to 1,800 spaces (weeknight) are projected. (The parking analysis is included in its entirety in Appendix C.)

Because a parking surplus would continue to occur, implementation of the 2010 Master Plan Update would not result in inadequate parking capacity. No impact would occur.

g) Conflict with adopted policies supporting alternative transportation (e.g., bus turnouts, bicycle racks)?		\boxtimes
racks)?		

No Impact. Implementation of projects included under the 2010 Master Plan Update would consist of new construction and renovation and demolition projects on the campus. The proposed 2010 Master Plan Updates would not conflict with policies that support alternative transportation (e.g., bus turnouts, bicycle racks). The proposed update would maintain the existing roadways on the project site and would not conflict with any policies adopted by the city that address alternative modes of transportation. No impact would occur.

_		_	
	\boxtimes		
]		

Less-than-Significant Impact with Mitigation Incorporated. The 2002 FEIR found that although increased wastewater flows would occur, the flows would not be significant enough to exceed the wastewater treatment requirements of the Regional Water Quality Control Board. Although a water reclamation facility was proposed in the 2002 Master Plan, it was dependent upon the expansion of City of Los Angeles graywater distribution lines to the campus. Therefore, the 2002 EIR analysis did not include the water reclamation facility in its wastewater calculations.

As indicated in Table 2, FTE enrollment anticipated under 2015 buildout conditions would be greater than existing FTE enrollment estimates. However, FTE enrollment under 2015 buildout conditions would be slightly less than the FTE enrollment estimates under buildout conditions previously analyzed in the 2002 EIR. Additionally, the proposed 2010 Master Plan Update assumes a reduction in impacts because of the removal of student housing and the science public/private partnerships, which were part of the 2002 Master Plan. This reduction in impacts is anticipated to occur even without the development of a water reclamation facility, which was proposed in 2002 but never constructed. Table 18 shows projected wastewater generation based on buildout-year FTE enrollment levels.

Issues	Potentially	Less-than- Significant Impact with Mitigation	Less-than- Significant	
	Significant	Incorporated	Impact	No Impact

Table 18: Projected Wastewater Generation Based on FTE Enrollment

		Wastewater Generation	Wastewater Flow
Measured Item	Unit	Rate	(gallons per day [gpd])
2002 Master Plan EIR 2010 Buildout Year	15,960 students	1.8 gpd/student	28,728
2010 Master Plan Update 2015 Buildout Year	15,500 students	1.8 gpd/student	27,900

Source: ICF Jones & Stokes, 2010.

The proposed 2010 Master Plan Update would follow the "green," energy-efficient, sustainable design guidelines set forth under the LEED program. Proposed buildings would be LEED certified. In addition, the proposed 2010 Master Plan Update would include a series of campus-wide strategies to improve water conservation. These include strategies that focus on reducing the use of potable water. Other strategies include the use of efficient irrigation, low-maintenance and native plant species, low-flow plumbing fixtures, and automatic sensors. Stormwater management strategies and landscaping recommendations are also included.

Pierce College has already begun following green design guidelines in existing buildings and will apply such elements throughout the proposed 2010 Master Plan Update. High-efficiency wastewater fixtures would be installed on campus during construction and renovation. These fixtures help to decrease the amount of sewage generated on the campus. As such, impacts would be less than previously anticipated and would remain less than significant. Although no significant impacts were anticipated, the mitigation measures prescribed in the 2002 Master Plan will be carried forward as part of the proposed 2010 Master Plan Update. These mitigation measures include the following:

2002 EIR Mitigation Measures

- **WW-1** Existing campus sewer lines shall be flushed on a regular basis to mitigate negative effects of below-criteria velocity flows, and
- **WW-2** All new construction and renovation shall include water conservation measures, such as low-flush toilets.

b) Require or result in the construction of new water			
or wastewater treatment facilities or expansion of existing		\square	
facilities, the construction of which could cause	Ш		
significant environmental effects?			

Less-than-Significant Impact. See the response to impact 16(a). The proposed 2010 Master Plan Update assumes a reduction in associated impacts because of the removal of student housing and the science public/private partnerships, which were part of the 2002 Master Plan. Impacts of the 2015 buildout conditions would be slightly less than the impacts of the buildout conditions analyzed in the 2002 EIR. Additionally, the proposed 2010 Master Plan Update would follow the "green," energy-efficient, sustainable design guidelines set forth under the LEED program. The College has already begun implementing these design guidelines in existing buildings and will continue to apply such elements throughout the proposed 2010 Master Plan Update. High-efficiency wastewater fixtures would be installed on campus during construction and renovation. These fixtures help to decrease the amount of sewage generated at the College. As such, impacts would be less than previously anticipated and would remain less than significant.

Issues	Potentially Significant	Less-than- Significant Impact with Mitigation Incorporated	Less-than- Significant Impact	No Impact
c) Require or result in the construction of new stormwater drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?				

Less-than-Significant Impact with Mitigation Incorporated. The 2002 EIR found that significant impacts would occur at those storms drains that were, at the time, performing inadequately. The area in question is south of Victory Boulevard and west of Mason Street, which would flood during large runoff events. As noted in the 2002 Master Plan's Preliminary Utility Evaluation Report, it was found that improvements and upgrades made as part of the parking lot 7 replacement project would help area storm drains to accommodate any increased storm flows that could have occurred due to development in the academic core of the campus. These improvements, as required by the mitigation measure prescribed in the 2002 Master Plan, would reduce impacts in the Victory Boulevard drainage area. With completion of the parking lot 7 replacement project, it is anticipated that the proposed 2010 Master Plan Update improvements will result in no new impacts related to stormwater drainage facilities. The proposed 2010 Master Plan Update would not increase the amount of development anticipated under the 2002 Master Plan. Finally, the mitigation measure developed for the 2002 Master Plan would be carried forward as part of the proposed 2010 Master Plan Update, and impacts would remain less than significant with mitigation. The mitigation measure is as follows:

SD-1 The area west of Mason Street and south of Victory Boulevard shall be upgraded during development of the specific projects in that area (as was done with parking lot 7) to develop a system that can adequately handle existing and future runoff. Proposed enhancements may include those identified in the Preliminary Utility Evaluation Report.

15 11 2011 1 1 1 1 1 1 1	i	
d) Have sufficient water supplies available to serve		
the project from existing entitlements and resources, or		
are new or expanded entitlements needed?		

Less-than-Significant Impact with Mitigation Incorporated. It was found in the 2002 EIR that the projected increase in water consumption would not exceed LADWP's available supplies. However, potential issues were raised about possible pressure loss due to pipe friction, which could decrease the amount of water the system would provide to a level below the anticipated demand of the College. However mitigation measures were presented as part of the 2002 EIR to reduce these impacts. These mitigation measures will be carried forward as part of the proposed 2010 Master Plan Update. Finally, as noted earlier, student housing is no longer proposed and the impacts of the 2015 buildout conditions would not be greater than the impacts of the buildout conditions analyzed in the 2002 EIR. Therefore, water demand would not be greater than the demand originally anticipated under the 2002 Master Plan.

Pierce College has already begun implementing "green" design elements based on the national LEED guidelines pertaining to sustainable standards for existing buildings and will continue to apply these design elements throughout the master plan process. The College intends to plant water-efficient landscaping, install high-efficiency fixtures, and possibly use gray water for non-potable applications. These strategies will help to reduce demands on the water supply and the system. However, due to the potential for impacts related to pressure loss, mitigation measures are carried forward from the 2002 EIR. These are as follows:

2002 EIR Mitigation Measures

WS-1 A 12-inch pipeline shall be installed from the main campus along El Rancho Drive to a new 12-inch service line off of De Soto Avenue or an 8-inch service line shall be installed at Victory Boulevard along the east edge of parking lot 7, a 12-inch main line shall be installed along the east edge of parking lot 7, and either a new 12-inch service line off of De Soto Avenue or a new main line along El Rancho Drive from the main campus shall be installed to provide adequate fire service to the proposed equestrian education center; and

Issues	Potentially Significant	Significant Impact with Mitigation Incorporated	Less-than- Significant Impact	No Impact						
WS-2 Three new 12-inch distribution lines shall be installed to convey fire flows to the vicinity of the proposed new facilities while providing tie points to the existing distribution piping. (College to confirm whether WS-2 has been implemented already.)										
e) Result in a determination by the wastewater treatment provider that serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?										
Less-than-Significant Impact. See response to impact 16(a). As stated above, the proposed 2010 Master Plan Update would reduce impacts because of the removal of student housing and the science public/private partnerships, which were part of the 2002 Master Plan. Additionally, the proposed 2010 Master Plan Update would follow the "green," energy-efficient, sustainable design guidelines set forth under the LEED program. Pierce College has already begun implementing these design guidelines in existing buildings and would continue to apply such elements throughout the implementation process for the proposed 2010 Master Plan Update. High-efficiency wastewater fixtures would be installed on campus during construction and renovation. These fixtures would help to decrease the amount of sewage generated at the College. As such, impacts would be less than previously anticipated and would remain less than significant.										
f) Be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs?			\boxtimes							
Less-than-Significant Impact. The 2002 Master Plan found that the projected increases in solid waste that could occur under the plan would be negligible and that local area landfills would have adequate capacity to meet project demands. The 2002 EIR assumed an FTE enrollment of 15,960 under the 2010 buildout year. Currently, a 15,500 FTE enrollment is assumed for the buildout year of 2015. This would result in a decrease (by 460) in FTE enrollment under the proposed 2010 Master Plan Update. Additionally, the proposed 2010 Master Plan Update would not include the previously planned student housing or the science public/private partnerships; these changes would result in solid waste reductions. As stated previously, the projects included under the proposed 2010 Master Plan Update would follow "green," energy-efficient, sustainable design guidelines as set forth under the LEED program. The College has, in fact, already started implementing these guidelines in existing buildings and has also implemented waste diversion practices. When appropriate, existing building equipment will be reused in the new and renovated facilities. A construction waste management plan will be considered to recycle or salvage construction, demolition, and land clearing waste. As such, impacts will remain less than significant.										
g) Comply with federal, state, and local statutes and regulations related to solid waste?				\boxtimes						

	Potentially Significant	Mitigation Incorporated	Significant Impact	No Impact
18. MANDATORY FINDINGS OF SIGNIFICANCE.				
a) Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal, or eliminate important examples of the major periods of California history or prehistory?				

Less-than-

Significant Impact with

Less-than-

Less-than-Significant Impact. The analysis in this addendum concluded that no new unavoidable significant impacts on the environment would occur. Applicable 2002 mitigation measures, in addition to new mitigation measures proposed for air quality, biological resources, geology, hazardous materials, cultural resources, hydrology, noise, public services, transportation, and utilities, would be adequate to mitigate any potential impacts related to the proposed 2010 Master Plan Update. Mitigation measures would reduce impacts to less-than-significant levels. In addition, most of the impacts from the 2010 Master Plan Update projects would be construction related and therefore temporary and short term. Once constructed, the buildings would be more energy efficient than the existing buildings on campus, including the ones they would replace, resulting in long-term benefits in terms of energy conservation and efficiency. Therefore, implementation of the proposed 2010 Master Plan Update is not anticipated to degrade the quality of the environment. This would be considered a less-than-significant impact.

b) Does the project have impacts that are individually limited but cumulatively considerable? ("cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects)?		\boxtimes	
Tuture projects)?		1	1

Less-than-Significant Impact. A significant impact may occur if the proposed 2010 Master Plan Update, in conjunction with related projects, would result in impacts that are less than significant when viewed separately but significant when viewed together. All potential impacts of the proposed 2010 Master Plan Update have been identified, and mitigation measures have been prescribed, where applicable, to reduce potential impacts to less-than-significant levels. None of these potential impacts is considered cumulatively considerable, and implementation of the mitigation measures identified in this addendum would ensure that no cumulative impacts would occur as a result of the proposed 2010 Master Plan Update.

Although related projects are proposed in the project vicinity, the cumulative impacts to which the proposed 2010 Master Plan Update would contribute would be less than significant, as discussed in the previous sections. The 2002 FEIR analyzed a total 45 related projects while 32 related projects are identified for the 2010 Master Plan Update. The 2010 related projects can be found in Table 5 of the Traffic Study provided as Appendix C.

Similar to the 2002 related projects, the 2010 related projects would include mostly commercial, retail and residential projects. Some institutional (school) uses are also proposed. In 2002, seven residential, seven institutional, two transportation, and one light industrial projects were proposed in the surrounding area. The remaining 27 were commercial, retail, or mixed-use projects. Of the 32 related projects included in the 2010 analysis, ten are residential, six are institutional and the remaining 16 are commercial, retail or mixed use. Four of the projects included in the 2010 analysis are the same as included under the 2002 FEIR. (These include residential uses at 6000 De Soto Ave., retail uses at 5960 Canoga Ave., fast food uses at 20956 Ventura Blvd., and institutional uses at 22555 Oxnard St.)

Issues

Issues	Potentially Significant	Less-than- Significant Impact with Mitigation Incorporated	Less-than- Significant Impact	No Impact
	U.g	,co. por unou		110
All potential impacts of the proposed 2010 Master Plan Update implementation of the mitigation measures provided in the proposidered cumulatively considerable, and implementation of	evious section	ns. None of t	these potenti	al impacts is

c) Does the project have environmental effects that will cause substantial adverse effects on human beings, either directly or indirectly?

No Impact. All potential impacts of the proposed 2010 Master Plan Update have been identified, and mitigation measures have been prescribed, where applicable, to reduce all potential impacts to less-than-significant levels. Upon implementation of mitigation measures, the proposed 2010 Master Plan Update would not have the potential to result in substantial adverse impacts on human beings either directly or indirectly.

d) Does the project have the potential to achieve	 	
short-term environmental goals to the disadvantage of		
long-term environmental goals?		

No Impact. The revised project would result in long-term benefits by designing the buildings and campus improvements to current codes and sustainability standards. Additionally, with the greater emphasis on reduction of GHG emissions at the District level, more sustainable practices and features are included in the 2010 Master Plan Update than what existed in the 2002 Master Plan. The revised project is also more in line with the enrollment trends at the College and better responds to the needs of the College curriculum. The revised project would result in short-term disruptions due to construction activities on the campus, but in the long-term it would result in construction of energy-efficient and state-of-the-art facilities. Therefore, the 2010 Master Plan Update would not result in any long-term environmental harm at the cost of short-term gains.

The revised project would not result in new significant impacts or exacerbate previously identified significant impacts. Mitigation measures included in the 2002 EIR in addition to added proposed mitigation measures would reduce all potentially significant impacts to less than significant levels. None of the conditions described in Section 15162 requiring the preparation of a subsequent EIR have occurred. Therefore, this addendum is considered to be the appropriate environmental document for the proposed 2010 Master Plan Update. The revised project would not achieve short-term environmental goals to the disadvantage of long-term environmental goals.

REFERENCES

All of the following references are incorporated herewith as though set forth in full. The references are available for review by contacting Shilpa Trisal, ICF Jones & Stokes, Inc.

- California Air Resources Board. 2008. Climate Change Scoping Plan. December.
- California Climate Action Team. 2006. Final 2006 Climate Action Team Report to the Governor and Legislature. March.
- California Department of Transportation. 1997. *Transportation Project-level Carbon Monoxide Protocol.*
- California Division of Mines and Geology. 1998. Seismic Hazard Zone Map, Canoga Quadrangle.
- California Division of Mines and Geology. 2001. Seismic Hazard Zone Report for the Canoga 7.5-minute Quadrangle, Los Angeles County, California. Seismic Hazard Zone Report 007.
- City of Los Angeles. 2004. Zoning Information and Map Access System.
- City of Los Angeles. 2006. L.A. CEQA Thresholds Guide.
- City of Los Angeles. n.d. *Canoga Park-Winnetka-Woodland Hills-West Hills Community Plan.* Department of City Planning. Available: http://cityplanning.lacity.org/complan/pdf/cpksumlu.pdf. Accessed: June 28, 2009.
- Environmental Data Resources, Inc. 2002a. *Radius Map with GeoCheck, Pierce College, Woodland Hills, CA.* March 14.
- Environmental Data Resources, Inc. 2002b. *Historical Topographic Map Report, Pierce College, Woodland Hills, CA.* March 15.
- Environmental Data Resources, Inc. 2002c. Aerial Photography Print Service (1928, 1952, 1965, 1976, 1989, and 1994), Pierce College, Woodland Hills, CA. March 18
- Federal Transit Administration. 2006. *Transit Noise and Vibration Assessment.* Report No. FTA-VA-1003-06. May.
- Fehr and Peers. 2010. Traffic and Parking Study for the Pierce College Facilities Master Plan Update Environmental Impact Report. January.
- Governor's Office of Planning and Research. 2008. *Technical Advisory on CEQA and Climate Change*. June.
- Kaku Associates Inc. 2000. Draft Transportation Technical Report for the Warner Center Specific Plan Transportation Improvement and Management Program Restudy and Supplemental Environmental Impact Report. October.

- Leymaster Environmental Consulting, LLC. 2005. Supplemental Soil Sampling Report.

 October 21.
- Los Angeles County. 1990. Los Angeles County General Plan, Safety Element.
- Los Angeles Pierce College. n.d. *About Pierce College*. Available: http://www.piercecollege.edu/pierce_about.asp>. Accessed: June 25, 2009.
- Myra L. Frank & Associates. 2002. Los Angeles Pierce College Facilities Master Plan Final Environmental Impact Report.
- Psomas. 2002. Draft Preliminary Utility Evaluation for Pierce College Los Angeles Community College District. February 11.
- South Coast Air Quality Management District. 1993. CEQA Air Quality Handbook.
- South Coast Air Quality Management District. 2003. Localized Significance Threshold Methodology for CEQA Evaluations.
- Southern California Association of Governments. 1996. Regional Comprehensive Plan and Guide. March.
- Winzler & Kelley Consulting Engineers. 2003. Hazardous materials survey reports (for various on-campus structures).

Personal Communication

- Abu-Ghazaleh, Nabil. Staff member. Los Angeles Pierce College. November 16 and 30 and December 23, 2009—email communication.
- Taylor, Scott, Swinerton Consulting. August 2009—meeting.
- Tsao, David, Swinerton Consulting. May 2010—e-mail communication.

LIST OF PREPARERS

Lead Agency

Los Angeles Community College District

ICF International

Lee Lisecki, Project Director Shilpa Trisal, Project Manager Tamseel Mir, Planner Lynze Milne, Planner Jim Wilder, Noise

Victor Ortiz, Air Quality

Erin Schorr, Biological Resources

Carson Anderson, Historic Resources

Namrata Belliappa, GIS

John Mathias, Editor

Consultant

Fehr and Peers, Traffic

APPENDICES

APPENDIX A

AESTHETIC RESOURCES PHOTOGRAPHIC DOCUMENTATION

PHOTO 1: SWEEPING VIEW LOOKING NORTHWEST TOWARDS SANTA SUSANA MOUNTAINS (from Equestrian Center)

Source: ICF Jones & Stokes. August 2009

PHOTO 2: SOUTH-FACING VIEW TOWARD CHALK HILLS (from El Rancho Road)

Source: ICF Jones & Stokes. August 2009

PHOTO 3: VIEW NORTHWEST FROM CHALK HILLS ACROSS THE CAMPUS (the Santa Susana Mountains Appearing as a Backdrop)

Source: ICF Jones & Stokes. August 2009

PHOTO 4: VIEW NORTHWEST FROM CHALK HILLS IN THE FAR SOUTHWEST CORNER OF THE CAMPUS (Canyon de Lana)

Source: ICF Jones & Stokes. August 2009

PHOTO 5: VIEW NORTHWEST FROM CHALK HILLS

Source: ICF Jones & Stokes. August 2009

PHOTO 6: VIEW SOUTHWEST FROM EQUESTRIAN CENTER (Shows Close-in Development Blocking Some Views From/Into the Campus)

Source: ICF Jones & Stokes. July 2009

APPENDIX B

AIR QUALITY DATA SHEETS

CONSERVATIVE ESTIMATE OF UNMITIGATED CONSTRUCTION EMISSIONS (pounds per day)

	ROC	NO _X	CO	SO_X	PM ₁₀ ^a	PM _{2.5}	CO ₂
Demolition Emissions							
On-site Total	1.14	7.68	4.68	-	20.67	4.72	700.30
Fugitive Dust	-	-	-	-	20.08	4.18	-
Off-Road Diesel	1.14	7.68	4.68	-	0.59	0.54	700.30
Off-site Total	1.62	20.74	8.99	0.03	0.95	0.81	2,938.22
On-Road Diesel	1.59	20.68	7.94	0.03	0.94	0.81	2,813.83
Worker Trips	0.03	0.06	1.05	-	0.01	-	124.39
Grand Total	2.76	28.42	13.67	0.03	21.62	5.53	3,638.52
Site Grading Emissions							
On-site Total	3.00	24.99	12.46	-	11.03	3.19	2,247.32
Fugitive Dust	-	-	-	-	9.78	2.04	-
Off-Road Diesel	3.00	24.99	12.46	-	1.25	1.15	2,247.32
Off-site Total	0.03	0.06	1.05	-	0.01	-	124.39
On-Road Diesel	-	-	-	-	-	-	-
Worker Trip	0.03	0.06	1.05	-	0.01	-	124.39
Grand Total	3.03	25.05	13.51		11.04	3.19	2,371.71
Building Erection/Finishing Emissions							
On-site Total	11.58	8.51	4.68	-	0.54	0.50	893.39
Off-Road Diesel, Bldg Cnst	1.11	8.51	4.68	-	0.54	0.50	893.39
Arch Coatings Off-Gas	10.47	-	-	-	-	-	-
Asphalt Off-Gas	-	-	-	-	-	-	-
Off-Road Diesel, Asphalt	-	-	-	-	-	-	-
Off-site Total	0.12	0.59	3.15	-	0.05	0.03	445.55
Worker Trips, Bldg Cnst	0.08	0.16	2.68	-	0.03	0.01	342.26
Vendor Trips, Bldg Cnst	0.04	0.42	0.35	-	0.02	0.02	88.10
Worker Trips, Arch Coatings	-	-	-	-	-	-	-
On-Road Diesel, Asphalt	-	-	-	-	-	-	-
Worker Trips, Asphalt	-	0.01	0.12	-	-	-	15.19
Grand Total	11.70	9.10	7.83	•	0.59	0.53	1,338.94
On-site Emissions Totals							
Demolition	1.1	7.7	4.7	-	20.7	4.7	700.3
Site Grading	3.0	25.0	12.5	-	11.0	3.2	2,247.3
Building Erection/Finishing	11.6	8.5	4.7	-	0.5	0.5	893.4
Maximum On-site Emissions	12	25	12	-	21	5	2,247
Localized Significance Threshold ^b		212	1,510		35	8	
Exceed Threshold?	No	No	No	No	No	No	No
Regional Emissions Totals							
Demolition	2.8	28.4	13.7	0.0	21.6	5.5	3,638.5
Site Grading	3.0	25.1	13.5	-	11.0	3.2	2,371.7
Building Erection/Finishing	11.7	9.1	7.8	-	0.6	0.5	1,338.9
Maximum Regional Emissions	12	28	14	0	22	6	3,639
Regional Significance Threshold	75	100	550	150	150	55	
Exceed Threshold?	No	No	No	No	No	No	No

Notes:

URBEMIS print-out sheets and fugitive PM calculation worksheet are attached.

^a Fugitive PM₁₀ and PM_{2.5} emissions estimates take into account compliance with SCAQMD Rule 403 requirements for fugitive dust suppression, which require that no visible dust be present beyond the site boundaries.

^b The project site is located in SCAQMD SRA No. 6. These LSTs are based on the site location SRA, distance to nearest sensitive receptor location from the project site (50 meters), and project area that could be under construction on any given day (five acres).

CONSERVATIVE ESTIMATE OF MITIGATED CONSTRUCTION EMISSIONS (pounds per day)

CONSERVATIVE ESTIMATE	ROC	NO _X	СО	SO _X	PM ₁₀ ^a	PM _{2.5} ^a	CO ₂
Demolition Emissions					10	213	
On-site Total	0.27	3.45	4.68	-	20.35	4.43	700.30
Fugitive Dust	-	-	-	-	20.08	4.18	-
Off-Road Diesel	0.27	3.45	4.68	_	0.27	0.25	700.30
Off-site Total	1.62	20.74	8.99	0.03	0.95	0.81	2,938.22
On-Road Diesel	1.59	20.68	7.94	0.03	0.94	0.81	2,813.83
Worker Trips	0.03	0.06	1.05	-	0.01	-	124.39
Grand Total	1.89	24.19	13.67	0.03	21.30	5.24	3,638.52
Site Grading Emissions							,
On-site Total	0.71	11.27	12.46	-	10.34	2.55	2,247.32
Fugitive Dust	-	-	-	-	9.78	2.04	_,,
Off-Road Diesel	0.71	11.27	12.46	_	0.56	0.51	2,247.32
Off-site Total	0.03	0.06	1.05	-	0.01	-	124.39
On-Road Diesel	-	-	-	-	-	_	-
Worker Trip	0.03	0.06	1.05	_	0.01	_	124.39
Grand Total	0.74	11.33	13.51	-	10.35	2.55	2,371.71
Building Erection/Finishing Emissions							<i>y-</i> ·
On-site Total	10.73	3.83	4.68	-	0.26	0.24	893.39
Off-Road Diesel, Bldg Cnst	0.26	3.83	4.68	-	0.26	0.24	893.39
Arch Coatings Off-Gas	10.47	-	-	_	-	-	-
Asphalt Off-Gas	-	_	_	_	_	_	_
Off-Road Diesel, Asphalt	_	_	_	_	_	_	_
Off-site Total	0.12	0.59	3.15	-	0.05	0.03	445.55
Worker Trips, Bldg Cnst	0.08	0.16	2.68	-	0.03	0.01	342.26
Vendor Trips, Bldg Cnst	0.04	0.42	0.35	_	0.02	0.02	88.10
Worker Trips, Arch Coatings	-	-	-	_	-	-	-
On-Road Diesel, Asphalt	_	_	_	_	_	_	_
Worker Trips, Asphalt	_	0.01	0.12	_	_	_	15.19
Grand Total	10.85	4.42	7.83	-	0.31	0.27	1,338.94
On-site Emissions Totals		.,,,,			****	7121	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Demolition Totals	0.3	3.4	4.7	_	20.3	4.4	700.3
Site Grading	0.7	11.3	12.5	_	10.3	2.6	2,247.3
Building Erection/Finishing	10.7	3.8	4.7	_	0.3	0.2	893.4
Maximum On-site Emissions	11	11	12	_	20	4	2,247
Localized Significance Threshold ^b		212	1,510		35	8	_,,
Exceed Threshold?	No	No	No	No	No	No	No
Regional Emissions Totals	110	110	110	110	110	110	110
Demolition	1.9	24.2	13.7	0.0	21.3	5.2	3,638.5
Site Grading	0.7	11.3	13.7	0.0	10.3	2.6	2,371.7
Building Erection/Finishing	10.9	4.4	7.8	-	0.3	0.3	1,338.9
		4.4 24	7.8 14	0			
Maximum Regional Emissions Regional Significance Threshold	11 75	2 4 100	550	0 150	21 150	5 55	3,639
Exceed Threshold?					130 No		N _o
Notes:	No	No	No	No	110	No	No

Notes:

URBEMIS print-out sheets and fugitive PM calculation worksheet are attached.

^a Fugitive PM₁₀ and PM_{2.5} emissions estimates take into account compliance with SCAQMD Rule 403 requirements for fugitive dust suppression, which require that no visible dust be present beyond the site boundaries.

^b The project site is located in SCAQMD SRA No. 6. These LSTs are based on the site location SRA, distance to nearest sensitive receptor location from the project site (50 meters), and project area that could be under construction on any given day (five acres).

Pierce College

Regional Emission Calculations (lbs/day)

	ROC	NOx	CO	SOx	PM10	PM2.5
Existing Condition						
Mobile	0.0	0.0	0.0	0.0	0.0	0.0
Area	0.0	0.0	0.0	0.0	0.0	0.0
Stationary	0.0	0.0	0.0	0.0	0.0	0.0
Total Existing	0.0	0.0	0.0	0.0	0.0	0.0
Project Condition						
Mobile	23.0	32.0	286.0	0.0	65.0	13.0
Area	2.0	3.0	4.0	0.0	0.0	0.0
Stationary	0.1	11.0	1.9	1.1	0.4	0.3
Total Project	25.1	46.0	291.9	1.1	65.4	13.4
Net Project Emissions						
Net Mobile	23.0	32.0	286.0	0.0	65.0	13.0
Net Area	2.0	3.0	4.0	0.0	0.0	0.0
Net Stationary	0.1	11.0	1.9	1.1	0.4	0.3
Total Net	25.1	46.0	291.9	1.1	65.4	13.4
SCAQMD Significance Threshold	55	55	550	150	150	55
Difference	(30)	(9)	(258)	(149)	(85)	(42)
Significant?	No	No	No	No	No	No

Electricity Usage

		Electricity			Emission Factors (lbs/MW				
		Usage Rate ^a	Total E	lectricity Usage	СО	ROC	NOx	PM10	SOx
Land Use	1,000 Sqft	(kWh\sq.ft\yr)	(KWh\year)	(MWh\Day)	<u>0.2</u>	<u>0.01</u>	<u>1.15</u>	<u>0.04</u>	<u>0.12</u>
Existing					Emissio	ns from Elec	tricity Cons	sumption (lb	s/day)
Office	0.0	12.95	0	0.000	0.000	0.000	0.000	0.000	0.000
Retail	0.0	13.55	0	0.000	0.000	0.000	0.000	0.000	0.000
Hotel/Motel	0.0	9.95	0	0.000	0.000	0.000	0.000	0.000	0.000
Restaurant	0.0	47.45	0	0.000	0.000	0.000	0.000	0.000	0.000
Food Store	0.0	53.30	0	0.000	0.000	0.000	0.000	0.000	0.000
Warehouse	0.0	4.35	0	0.000	0.000	0.000	0.000	0.000	0.000
College/University	0.0	11.55	0	0.000	0.000	0.000	0.000	0.000	0.000
High School	0.0	10.50	0	0.000	0.000	0.000	0.000	0.000	0.000
Elementary School	0.0	5.90	0	0.000	0.000	0.000	0.000	0.000	0.000
Hospital	0.0	21.70	0	0.000	0.000	0.000	0.000	0.000	0.000
Miscellaneous	0.0	10.50	0	0.000	0.000	0.000	0.000	0.000	0.000
Residential (DU)	0.0	5,627	0	0.000	0.000	0.000	0.000	0.000	0.000
	Total Existing		0	0.000	0.00	0.00	0.00	0.00	0.00
Project									
Office	0.0	12.95	0	0.000	0.000	0.000	0.000	0.000	0.000
Retail	0.0	13.55	0	0.000	0.000	0.000	0.000	0.000	0.000
Hotel/Motel	0.0	9.95	0	0.000	0.000	0.000	0.000	0.000	0.000
Restaurant	0.0	47.45	0	0.000	0.000	0.000	0.000	0.000	0.000
Food Store	0.0	53.3	0	0.000	0.000	0.000	0.000	0.000	0.000
Warehouse	0.0	4.35	0	0.000	0.000	0.000	0.000	0.000	0.000
College/University	301.0	11.55	3,476,550	9.525	1.905	0.095	10.954	0.381	1.143
High School	0.0	10.5	0	0.000	0.000	0.000	0.000	0.000	0.000
Elementary School	0.0	5.9	0	0.000	0.000	0.000	0.000	0.000	0.000
Hospital	0.0	21.7	0	0.000	0.000	0.000	0.000	0.000	0.000
Miscellaneous	0.0	10.5	0	0.000	0.000	0.000	0.000	0.000	0.000
Residential (DU)	0.0	5,627	0	0.000	0.000	0.000	0.000	0.000	0.000
	Total Project		3,476,550	9.525	1.91	0.10	10.95	0.38	1.14
	Net Emissions From	Electricity Usage			1.91	0.10	10.95	0.38	1.14

Summary of Stationary Emissions

	<u>co</u>	ROC	<u>NOx</u>	<u>PM10</u>	<u>SOx</u>
Total Existing Emissions (lbs/day)	0.00	0.00	0.00	0.00	0.00
Total Project Emissions (lbs/day)	1.91	0.10	10.95	0.38	1.14
Total Net Emissions (lbs/day)	1.91	0.10	10.95	0.38	1.14

^a Electricity Usage Rates from Table A9-11-A, <u>CEQA Air Quality Handbook</u>, SCAQMD, 1993.

^b Emission Factors from Table A9-11-B, <u>CEQA Air Quality Handbook</u>, SCAQMD, 1993.

 $^{^{\}rm c}\,$ Natural Gas Usage Rates from Table A9-12-A, CEQA Air Quality Handbook, SCAQMD, 1993.

 $^{^{\}rm d}\,$ Emission Factors from Table A9-12-B, CEQA Air Quality Handbook, SCAQMD, 1993.

^e The emission factors for NOx in lbs per million cuft of natural gas are 120 for nonresidential uses and 80 for residential uses.

Pierce College

Regional Greenhouse Gas Emission Calculations (lbs/day)

	CO ₂	CH₄	N ₂ O	CO₂e
Existing Condition				
Mobile	-	-	-	-
Area	-	-	-	-
Stationary	-	-	-	-
Total Existing	-	-	-	-
Project Condition				
Mobile	38,881.00	8.45	8.11	41,572.76
Area	5,779.00	0.64	0.01	5,795.88
Stationary	13,442.08	0.71	0.05	13,471.15
Total Project	58,102.09	9.80	8.17	60,839.79
Net Project Emissions				
Net Mobile	38,881.00	8.45	8.11	41,572.76
Net Area	5,779.00	0.64	0.01	5,795.88
Net Stationary	13,442.08	0.71	0.05	13,471.15
Total Net	58,102.09	9.80	8.17	60,839.79
SCAQMD Significance Threshold				
Difference				
Significant?	No	No	No	No

Electricity Usage

		Electricity					Factors (I	,
		Usage Rate ^a	Total Ele	ctricity Usage	CO ₂	CH ₄	N ₂ O	CO
and Use	1,000 Sqft	(kWh\sq.ft\yr)	(KWh\year)	(MWh\day)	804.54	0.0067	0.0037	21/31
Existing					Emi	ssions fron	n Electricit	y (lbs/da
Office	0.0	12.95	-	-	-	-		-
Retail	0.0	13.55	-	-	-	-		-
Hotel/Motel	0.0	9.95	-	-	-	-		-
Restaurant	0.0	47.45			-	-		
Food Store	0.0	53.30	-	-	-	-		-
Warehouse	0.0	4.35	-	-	-	-		
College/University	0.0	11.55			-	-		-
High School	0.0	10.50			-	-		
Elementary School	0.0	5.90			-	-		
Hospital	0.0	21.70	-	-	-	-		
Miscellaneous	0.0	10.50	-	-	-	-		-
Residential (DU)	0.0	5,627	-	-	-	-	-	-
	Total Existing		-	-	-	-	-	-
roject								
Office	0.0	12.95	-	-	-	-		-
Retail	0.0	13.55	-	-	-	-		-
Hotel/Motel	0.0	9.95				-		
Restaurant	0.0	47.45				-		
Food Store	0.0	53.3				-		
Warehouse	0.0	4.35				-		
College/University	301.0	11.55	3.476.550.00	9.52	7.663.08	0.06	0.04	7.675.2
High School	0.0	10.5	-		-	-	-	-,
Elementary School	0.0	5.9				-		-
Hospital	0.0	21.7				-		-
Miscellaneous	0.0	10.5			-	-		
Residential (DU)	0.0	5,627	-	-		-	-	-
	Total Project		3,476,550.00	9.52	7,663.08	0.06	0.04	7,675.2
	Net Emissions From I	Electricity I Isaac			7,663.08	0.06	0.04	7,675.2

Area Sources

Natural Gas Usage

		Natural Gas Usage Rate d				Emission I		
		Usage Nate	Total Na	tural Gas Usage	CO_2	CH ₄	N ₂ O	CO ₂ e
Land Use	1,000 Sqft	(cu.ft\sq.ft\mo)	(cu.ft\mo)	(Btu/day)f	53.05	0.0059	0.0001	21/310
Existing					Emiss	sions from I	Natural Ga	s (lbs/day
Office	0.0	2.0	-	-	-	-	-	-
Retail	0.0	2.9	-	-	-	-	-	-
Hotel/Motel	0.0	4.8	-	-	-	-	-	
Restaurant	0.0	4.8	-	-	-	-	-	-
Food Store	0.0	2.9	-	-	-	-	-	-
Warehouse	0.0	2.0	-	-	-	-	-	-
College/University	0.0	4.8	-	-	-	-	-	-
High School	0.0	2.9	-	-	-	-	-	-
Elementary School	0.0	2.0	-	-	-	-	-	-
Hospital	0.0	4.8	-	-	-	-	-	-
Miscellaneous	0.0	2.9	-	-	-	-	-	
Residential (Single Family DU)	0.0	6,665	-	-	-	-		-
Residential (Multi-Family DU)	0.0	4,012	-	-	-	-	-	-
	Total Existing		-	-	-	-	-	-
Project								
Office	0.0	2.0	_			-		
Retail	0.0	2.9	_			-		
Hotel/Motel	0.0	4.8	-			-		-
Restaurant	0.0	4.8	_			-		
Food Store	0.0	2.9	_			-		
Warehouse	0.0	2.0	_			-		
College/University	0.0	4.8	1.444.800.00	49,412,160.00	5.779.00	0.64	0.01	5.795.88
High School	0.0	2.9		., ,		-	-	
Elementary School	0.0	2.0	_			-		
Hospital	0.0	4.8	_			-		
Miscellaneous	0.0	2.9	-			-		-
Residential (Single Family DU)	0.0	6.665	_	-		-		
Residential (Multi-Family DU)	0.0	4,012	-	-	-	-	-	-
	Total Project		1,444,800.00	49,412,160.00	5,779.00	0.64	0.01	5,795.88
	Net Emissions From	Natural Gas Usage			5,779.00	0.64	0.01	5,795.88

Summary of Stationary and Area Source Emissions

	CO ₂	CH ₄	N_2O	$CO_2\mathrm{e}$
Total Existing Emissions (lbs/day)	-	-		
Total Project Emissions (lbs/day)	#######	0.71	0.05	#######
Total Net Emissions (lbs/day)	#######	0.71	0.05	#######

^a Electricity Usage Rates from Table A9-11-A, <u>CEQA Air Quality Handbook</u>, SCAQMD, 1993.

^b Emission Factors from Table C.1 and Table C.2, <u>General Reporting Protocol</u>, California Climate Action Registry, March 2007.

^c Global Warming Potential is 21 for CH₄ and 310 for N₂O, General Reporting Protocol, California Climate Action Registry, March 2007.

<sup>Autural Gas Usage Rates from Table A9-12-A, <u>CEOA Air Quality Handbook</u>, SCAOMD, 1993.

Emission Factors from Table C.5 and Table C.6, <u>General Reporting Protocol</u>, California Climate Action Registry, March 2007.

Cubic Foot of natural gas = 1,026 Blu. Energy Information Administration. Available http://www.ela.doe.gov/basics/conversion_basics.html</sup>

Pierce College Mobile Sources

Mobile Sources

	Dansont Toma	VMT has Torre	Emissian	Factors ^a	CH ₄	N.O.	CO o
Vehicle Type	Percent Type 0	VMT by Type 0	Emission CH₄	Factors ^a N ₂ O	CH ₄	N_2O	CO₂e 21/310 ^b
	•	·	4	20			
Existing					Emissions from	n Mobile Sourc	es (lbs/day)
Light Auto	0.0	-	0.06	0.08	-	-	-
Light Truck < 3750 lbs	0.0	-	0.11	0.14	-	-	-
Light Truck 3751-5750 lbs	0.0	-	0.11	0.14	-	-	-
Med Truck 5751-8500 lbs	0.0	-	0.18	0.09	-	-	-
Lite-Heavy Truck 8501-10,000 lbs	0.0	-	0.18	0.09	-	-	-
Lite-Heavy Truck 10,001-14,000 lbs	0.0	-	0.18	0.09	-	=	-
Med-Heavy Truck 14,001-33,000 lbs	0.0	-	0.08	0.05	-	-	-
Heavy-Heavy Truck 33,001-60,000 lbs	0.0	-	0.08	0.05	-	-	-
Other Bus	0.0	-	0.08	0.05	-	-	-
Urban Bus	0.0	-	0.08	0.05	-	-	-
Motorcycle	0.0	-	0.42	0.01	-	-	-
School Bus	0.0	-	0.08	0.05	-	-	-
Motor Home	0.0	-	0.11	0.14	-	-	-
т	otal Existing		1.75	1.03	_	_	_
·	•						
	Percent Type	VMT by Type		Factors ^a	CH₄	N_2O	CO ₂ e
Vehicle Type	100	37701.15	CH ₄	N_2O			21/310 ^b
Project							
Light Auto	51.1	19,265.29	0.06	0.08	2.55	3.40	1,106.84
Light Truck < 3750 lbs	7.3	2,752.18	0.11	0.14	0.67	0.85	277.35
Light Truck 3751-5750 lbs	23.1	8,708.97	0.11	0.14	2.11	2.69	877.63
Med Truck 5751-8500 lbs	10.8	4,071.72	0.18	0.09	1.62	0.81	284.38
Lite-Heavy Truck 8501-10,000 lbs	1.7	640.92	0.18	0.09	0.25	0.13	44.76
Lite-Heavy Truck 10,001-14,000 lbs	0.5	188.51	0.18	0.09	0.07	0.04	13.17
Med-Heavy Truck 14,001-33,000 lbs	0.9	339.31	0.08	0.05	0.06	0.04	12.85
Heavy-Heavy Truck 33,001-60,000 lbs	0.6	226.21	0.08	0.05	0.04	0.02	8.57
Other Bus	0.1	37.70	0.08	0.05	0.01	0.00	1.43
Urban Bus	0.1	37.70	0.08	0.05	0.01	0.00	1.43
Motorcycle	2.8	1.055.63	0.42	0.01	0.98	0.02	27.74
School Bus	0.1	37.70	0.08	0.05	0.01	0.00	1.43
Motor Home	0.9	339.31	0.11	0.14	0.08	0.10	34.19
т	otal Project		1.75	1.03	8.45	8.11	2,691.76
N	let Emissions From Mo	bile Sources			8.45	8.11	2,691.76

^a Emission factors from Table C.4, <u>General Reporting Protocol</u>, California Climate Action Registry, March 2007.

b Global Warming Potential is 21 for CH₄ and 310 for N₂O, General Reporting Protocol, California Climate Action Registry, March 2007.

Page: 1

10/2/2009 12:15:42 PM

Urbemis 2007 Version 9.2.4

Combined Summer Emissions Reports (Pounds/Day)

File Name: G:\Los Angeles\3_Projects_Air Quality\Pierce College\Impact Analysis\Pierce Construction.urb924

Project Name: Pierce Construction
Project Location: South Coast AQMD

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

Summary Report:

CONSTRUCTION EMISSION ESTIMATES

	ROG	<u>NOx</u>	<u>CO</u>	SO2	PM10 Dust PM	10 Exhaust	<u>PM10</u>	PM2.5 Dust PM2	2.5 Exhaust	PM2.5	<u>CO2</u>
2010 TOTALS (lbs/day unmitigated)	3.04	28.42	13.67	0.03	20.18	1.44	21.61	4.21	1.32	5.53	3,638.52
2011 TOTALS (lbs/day unmitigated)	11.70	9.09	7.83	0.00	0.02	0.57	0.59	0.01	0.52	0.53	1,338.94

Construction Unmitigated Detail Report:

CONSTRUCTION EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

	<u>ROG</u>	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	PM10 Dust	PM10 Exhaust	<u>PM10</u>	PM2.5 Dust	PM2.5 Exhaust	<u>PM2.5</u>	<u>CO2</u>
Time Slice 7/15/2010-8/13/2010 Active	2.76	<u>28.42</u>	<u>13.67</u>	<u>0.03</u>	<u>20.18</u>	<u>1.44</u>	<u>21.61</u>	<u>4.21</u>	<u>1.32</u>	<u>5.53</u>	3,638.52
Davs: 22 Demolition 07/15/2010-08/14/2010	2.76	28.42	13.67	0.03	20.18	1.44	21.61	4.21	1.32	5.53	3,638.52
Fugitive Dust	0.00	0.00	0.00	0.00	20.08	0.00	20.08	4.18	0.00	4.18	0.00
Demo Off Road Diesel	1.14	7.68	4.68	0.00	0.00	0.59	0.59	0.00	0.54	0.54	700.30
Demo On Road Diesel	1.59	20.68	7.94	0.03	0.09	0.85	0.94	0.03	0.78	0.81	2,813.83
Demo Worker Trips	0.03	0.06	1.05	0.00	0.01	0.00	0.01	0.00	0.00	0.00	124.39
Time Slice 8/16/2010-9/30/2010 Active	3.04	25.05	13.51	0.00	5.99	1.25	7.25	1.25	1.15	2.40	2,371.71
Davs: 34 Mass Grading 08/15/2010-	3.04	25.05	13.51	0.00	5.99	1.25	7.25	1.25	1.15	2.40	2,371.71
09/30/2010 Mass Grading Dust	0.00	0.00	0.00	0.00	5.99	0.00	5.99	1.25	0.00	1.25	0.00
Mass Grading Off Road Diesel	3.00	24.99	12.46	0.00	0.00	1.25	1.25	0.00	1.15	1.15	2,247.32
Mass Grading On Road Diesel	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Page: 1

10/2/2009 12:15:42 PM

Mass Grading Worker Trips	0.03	0.06	1.05	0.00	0.01	0.00	0.01	0.00	0.00	0.00	124.39
Time Slice 10/1/2010-12/31/2010	1.34	9.80	8.08	0.00	0.02	0.60	0.62	0.01	0.56	0.56	1,323.82
Active Davs: 66 Building 10/01/2010-09/30/2011	1.34	9.80	8.08	0.00	0.02	0.60	0.62	0.01	0.56	0.56	1,323.82
Building Off Road Diesel	1.21	9.16	4.81	0.00	0.00	0.58	0.58	0.00	0.53	0.53	893.39
Building Vendor Trips	0.04	0.46	0.38	0.00	0.00	0.02	0.02	0.00	0.02	0.02	88.10
Building Worker Trips	0.09	0.17	2.88	0.00	0.02	0.01	0.03	0.01	0.01	0.01	342.33
Time Slice 1/3/2011-5/31/2011 Active	1.23	9.08	7.71	0.00	0.02	0.57	0.59	0.01	0.52	0.53	1,323.74
Davs: 107 Building 10/01/2010-09/30/2011	1.23	9.08	7.71	0.00	0.02	0.57	0.59	0.01	0.52	0.53	1,323.74
Building Off Road Diesel	1.11	8.51	4.68	0.00	0.00	0.54	0.54	0.00	0.50	0.50	893.39
Building Vendor Trips	0.04	0.42	0.35	0.00	0.00	0.02	0.02	0.00	0.02	0.02	88.10
Building Worker Trips	0.08	0.16	2.68	0.00	0.02	0.01	0.03	0.01	0.01	0.01	342.26
Time Slice 6/1/2011-9/30/2011 Active	<u>11.70</u>	9.09	7.83	0.00	0.02	0.57	0.59	0.01	0.52	0.53	1,338.94
Davs: 88 Building 10/01/2010-09/30/2011	1.23	9.08	7.71	0.00	0.02	0.57	0.59	0.01	0.52	0.53	1,323.74
Building Off Road Diesel	1.11	8.51	4.68	0.00	0.00	0.54	0.54	0.00	0.50	0.50	893.39
Building Vendor Trips	0.04	0.42	0.35	0.00	0.00	0.02	0.02	0.00	0.02	0.02	88.10
Building Worker Trips	0.08	0.16	2.68	0.00	0.02	0.01	0.03	0.01	0.01	0.01	342.26
Coating 06/01/2011-09/30/2011	10.47	0.01	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	15.19
Architectural Coating	10.47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Coating Worker Trips	0.00	0.01	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	15.19

Phase Assumptions

Phase: Demolition 7/15/2010 - 8/14/2010 - Default Demolition Description

Building Volume Total (cubic feet): 478010 Building Volume Daily (cubic feet): 47800 On Road Truck Travel (VMT): 663.89

Off-Road Equipment:

¹ Concrete/Industrial Saws (10 hp) operating at a 0.73 load factor for 8 hours per day

¹ Rubber Tired Dozers (357 hp) operating at a 0.59 load factor for 1 hours per day

² Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 6 hours per day

Page: 1

10/2/2009 12:15:42 PM

Phase: Mass Grading 8/15/2010 - 9/30/2010 - Default Mass Site Grading/Excavation Description

Total Acres Disturbed: 1.97

Maximum Daily Acreage Disturbed: 0.49 Fugitive Dust Level of Detail: Default

12.22 lbs per acre-day

On Road Truck Travel (VMT): 0

Off-Road Equipment:

- 1 Graders (174 hp) operating at a 0.61 load factor for 6 hours per day
- 1 Rubber Tired Dozers (357 hp) operating at a 0.59 load factor for 6 hours per day
- 1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 7 hours per day
- 1 Water Trucks (189 hp) operating at a 0.5 load factor for 8 hours per day

Phase: Building Construction 10/1/2010 - 9/30/2011 - Default Building Construction Description Off-Road Equipment:

- 1 Cranes (399 hp) operating at a 0.43 load factor for 4 hours per day
- 2 Forklifts (145 hp) operating at a 0.3 load factor for 6 hours per day
- 1 Tractors/Loaders/Backhoes (108 hp) operating at a 0.55 load factor for 8 hours per day

Phase: Architectural Coating 6/1/2011 - 9/30/2011 - Type Your Description Here

Rule: Residential Interior Coatings begins 1/1/2005 ends 6/30/2008 specifies a VOC of 100 Rule: Residential Interior Coatings begins 7/1/2008 ends 12/31/2040 specifies a VOC of 50 Rule: Residential Exterior Coatings begins 1/1/2005 ends 6/30/2008 specifies a VOC of 250 Rule: Residential Exterior Coatings begins 7/1/2008 ends 12/31/2040 specifies a VOC of 100 Rule: Nonresidential Interior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250 Rule: Nonresidential Exterior Coatings begins 1/1/2005 ends 12/31/2040 specifies a VOC of 250

Page: 1

10/9/2009 01:31:51 PM

Urbemis 2007 Version 9.2.4

Combined Summer Emissions Reports (Pounds/Day)

File Name: G:\Los Angeles\3_Projects_Air Quality\Pierce College\Impact Analysis\Urbemis\Pierce Operations.urb924

Project Name: Pierce College Operations

Project Location: South Coast AQMD

On-Road Vehicle Emissions Based on: Version: Emfac2007 V2.3 Nov 1 2006

Off-Road Vehicle Emissions Based on: OFFROAD2007

Summary Report:

AREA SOURCE EMISSION ESTIMATES

	ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	PM2.5	<u>CO2</u>
TOTALS (lbs/day, unmitigated)	2.09	2.93	4.00	0.00	0.02	0.02	3,499.63
OPERATIONAL (VEHICLE) EMISSION ESTIMATES							
	ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	PM2.5	<u>CO2</u>
TOTALS (lbs/day, unmitigated)	20.69	28.69	255.35	0.40	65.12	12.67	38,852.43
SUM OF AREA SOURCE AND OPERATIONAL EMISSION E	STIMATES						
	ROG	<u>NOx</u>	<u>CO</u>	<u>SO2</u>	<u>PM10</u>	PM2.5	<u>CO2</u>
TOTALS (lbs/day, unmitigated)	22.78	31.62	259.35	0.40	65.14	12.69	42,352.06

Area Source Unmitigated Detail Report:

AREA SOURCE EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

<u>Source</u>	ROG	<u>NOx</u>	CO	<u>SO2</u>	<u>PM10</u>	PM2.5	<u>CO2</u>
Natural Gas	0.21	2.91	2.45	0.00	0.01	0.01	3,496.82

Page: 1

10/9/2009 01:31:51 PM

Hearth - No Summer Emissions

Landscape	0.12	0.02	1.55	0.00	0.01	0.01	2.81
Consumer Products	0.00						
Architectural Coatings	1.76						
TOTALS (lbs/day, unmitigated)	2.09	2.93	4.00	0.00	0.02	0.02	3,499.63

Area Source Changes to Defaults

Operational Unmitigated Detail Report:

OPERATIONAL EMISSION ESTIMATES Summer Pounds Per Day, Unmitigated

<u>Source</u>	ROG	NOX	CO	SO2	PM10	PM25	CO2
Junior college (2 yrs)	20.69	28.69	255.35	0.40	65.12	12.67	38,852.43
TOTALS (lbs/day, unmitigated)	20.69	28.69	255.35	0.40	65.12	12.67	38,852.43

Operational Settings:

Does not include correction for passby trips

Does not include double counting adjustment for internal trips

Analysis Year: 2015 Temperature (F): 80 Season: Summer

Emfac: Version: Emfac2007 V2.3 Nov 1 2006

Summary of Land Uses

Land Use Type	Acreage	Trip Rate	Unit Type	No. Units	Total Trips	Total VMT
Junior college (2 yrs)		13.77	1000 sq ft	301.45	4,150.97	37,701.15
					4.150.97	37.701.15

Page: 1 10/9/2009 01:31:51 PM

10/3/2003 01.31.31 FW						
		Vehicle Fleet	: Mix			
Vehicle Type		Percent Type	Non-Catalyst	C	Catalyst	Diesel
Light Auto		50.9	0.2		99.6	0.2
Light Truck < 3750 lbs		7.3	1.4		95.9	2.7
Light Truck 3751-5750 lbs		23.2	0.0		100.0	0.0
Med Truck 5751-8500 lbs		10.8	0.0		100.0	0.0
Lite-Heavy Truck 8501-10,000 lbs		1.7	0.0		82.4	17.6
Lite-Heavy Truck 10,001-14,000 lbs		0.5	0.0		60.0	40.0
Med-Heavy Truck 14,001-33,000 lbs		0.9	0.0		22.2	77.8
Heavy-Heavy Truck 33,001-60,000 lbs		0.6	0.0		0.0	100.0
Other Bus		0.1	0.0		0.0	100.0
Urban Bus		0.1	0.0		0.0	100.0
Motorcycle		2.9	48.3		51.7	0.0
School Bus		0.1	0.0		0.0	100.0
Motor Home		0.9	0.0		88.9	11.1
		Travel Condi	tions			
		Residential		(Commercial	
	Home-Work	Home-Shop	Home-Other	Commute	Non-Work	Customer
Urban Trip Length (miles)	12.7	7.0	9.5	13.3	7.4	8.9
Rural Trip Length (miles)	17.6	12.1	14.9	15.4	9.6	12.6
Trip speeds (mph)	30.0	30.0	30.0	30.0	30.0	30.0
% of Trips - Residential	32.9	18.0	49.1			
% of Trips - Commercial (by land use)						
Junior college (2 yrs)				5.0	2.5	92.5

Title : Los Angeles County Avg Annual CYr 2015 Default Title

Version: Emfac2007 V2.3 Nov 1 2006 Run Date: 2009/09/30 10:26:29

Scen Year: 2015 -- All model years in the range 1971 to 2015 selected

Season: Annual Area: Los Angeles

Year: 2015 -- Model Years 1971 to 2015 Inclusive -- Annual

Emfac2007 Emission Factors: V2.3 Nov 1 2006

County Average Los Angeles County Average

Table 1: Running Exhaust Emissions (grams/mile)

Pollutant Name: Carbon Monoxide Temperature: 60F Relative Humidity: 50%

1 Ollutui	it ivaiii	c. carbe	JII IVIOIIOXIC		remperat	ui C. 001	riciative ii	armanty. 30	/0						
Speed MPH	LDA	A	LDT1	LDT2	MDV	LHD1	LHD2	MHD	HHD	OBUS	UBUS	MCY	SBUS	МН	ALL
	3	2.599	4.806	4.154	5.713	3 11.687	5.805	9.211	16.755	7.249	26.271	L 27.934	18.977	24.611	4.354
	4	2.527	4.624	4.036	5.504	11.687	5.805			7.249			18.977	24.611	4.256
	5	2.458	4.454	3.925	5.309	11.687	5.805	9.211	16.755	7.249	26.271	27.934	18.977	24.611	4.164
	6	2.393	4.294	3.819	5.128	10.729	5.338	8.493	15.52	6.675	23.978	26.884	17.473	22.587	3.993
	7	2.331	4.145	3.718	4.958	9.871	4.918	7.846	14.369	6.158	21.936	25.92	16.122	20.775	3.833
	8	2.272	4.006	3.622	2 4.8	9.101	4.541	7.263	13.298	5.693	20.115	25.034	14.905	19.151	3.685
	9	2.216	3.875	3.531	4.651	8.41	4.202	6.737	12.303	5.274	18.488	3 24.22	13.809	17.692	3.547
	10	2.163	3.753	3.444	4.511	7.789	3.896	6.261	. 11.38	4.896	17.032	23.472	12.82	16.38	3.418
	11	2.112	3.639	3.361	4.38	7.229	3.62	5.83	10.527	4.554	15.727	22.786	11.925	15.199	3.298
	12	2.063	3.531	3.281	4.256	6.724	3.371	5.44	9.74	4.245	14.555	22.156	11.116	14.135	3.186
	13	2.016	3.429	3.205	4.139	6.268	3.146	5.086	9.018	3.965	13.503	3 21.58	10.383	13.173	
	14	1.971	3.334	3.132	4.029	5.855	2.942	4.764	8.358	3.711	12.555	21.053	9.718	12.304	2.983
	15	1.928	3.244	3.063	3.925	5.482	2.757	4.472	7.758	3.48	11.701	20.572	9.114	11.518	2.892
	16	1.887	3.159												
	17	1.848													
	18	1.81													
	19	1.773		2.811	L 3.561	4.305									
	20	1.738													
	21	1.704													
	22	1.672													
	23	1.64													
	24	1.61													
	25	1.581													
	26	1.553													
	27	1.525													
	28	1.499	2.428												
	29	1.474													
	30	1.45	2.345												
	31	1.426													
	32	1.403	2.269												
	33	1.381													
	34	1.36													
	35	1.34													
	36	1.32													
	37	1.301	2.114												
	38	1.283	2.089												
	39	1.265	2.065												
	40	1.249	2.042	1.97	2.497	2.146	1.076	1.739	3.374	1.356	4.249	19.743	3.552	4.51	1.778

CALINE4: CALIFORNIA LINE SOURCE DISPERSION MODEL JUNE 1989 VERSION

PAGE 1

JOB: DE SOTO AND VICTORY AMNP RUN: Hour 1 (WORST CASE ANGLE)

POLLUTANT: Carbon Monoxide

I. SITE VARIABLES

U=	.5	M/S	Z0=	100.	CM		ALT=	0.	(M)
BRG=	WORST	CASE	VD=	.0	CM/S				
CLAS=	7	(G)	VS=	.0	CM/S				
MIXH=	1000.	M	AMB=	.0	PPM				
SIGTH=	5.	DEGREES	TEMP=	15.6	DEGREE	(C)			

II. LINK VARIABLES

	LINK	*	LINK	COORDI	NATES	(M)	*			EF	Н	W
	DESCRIPTION	*	X1	Y1	X2	Y2	*	TYPE	VPH	(G/MI)	(M)	(M)
		_ * _					_ * -					
Α.	NF	*	7	-450	7	-150	*	AG	1080	2.1	.0	19.5
В.	NA	*	7	-150	7	0	*	AG	1010	3.4	.0	13.5
C.	ND	*	7	0	7	150	*	AG	1031	2.4	.0	13.5
D.	NE	*	7	150	7	450	*	AG	1031	2.1	.0	19.5
Ε.	SF	*	-7	450	-7	150	*	AG	1658	2.1	.0	19.5
F.	SA	*	-7	150	-7	0	*	AG	1577	3.7	.0	13.5
G.	SD	*	-7	0	-7	-150	*	AG	1952	2.9	.0	13.5
Η.	SE	*	-7	-150	-7	-450	*	AG	1952	2.1	.0	19.5
I.	WF	*	450	7	150	7	*	AG	2024	2.1	.0	19.5
J.	WA	*	150	7	0	7	*	AG	1509	3.4	.0	13.5
Κ.	WD	*	0	7	-150	7	*	AG	1665	2.4	.0	13.5
L.	WE	*	-150	7	-450	7	*	AG	1665	2.1	.0	19.5
Μ.	EF	*	-450	-7	-150	-7	*	AG	1171	2.1	.0	19.5
N.	EA	*	-150	-7	0	-7	*	AG	1086	3.3	.0	13.5
Ο.	ED	*	0	-7	150	-7	*	AG	1285	2.3	.0	13.5
P.	EE	*	150	-7	450	-7	*	AG	1285	2.1	.0	19.5
Q.	NL	*	0	0	2	-150	*	AG	70	3.4	.0	9.9
R.	SL	*	0	0	-2	150	*	AG	81	3.4	.0	9.9
s.	WL	*	0	0	150	2	*	AG	515	3.2	.0	9.9
т.	EL	*	0	0	-150	-2	*	AG	85	3.2	.0	9.9

III. RECEPTOR LOCATIONS

	*	COORD	COORDINATES				
RECEPTOR	*	X	Y	Z			
	*						
1. NE3	*	17	17	1.8			
2. SE3	*	17	-17	1.8			
3. SW3	*	-17	-17	1.8			
4. NW3	*	-17	17	1.8			

	*		*	PRED	*	CONC/LINK							
	*	BRG	*	CONC	*				(PPI	(Iv			
RECEPTOR	*	(DEG)	*	(PPM)	*	A	В	C	D	E	F	G	H
	-		_.		_ * _								
1. NE3	*	187.	*	1.2	*	.0	. 4	.0	.0	.0	.0	.1	. 2
2. SE3	*	277.	*	1.1	*	.0	. 2	.0	.0	.0	.0	. 2	.0
3. SW3	*	81.	*	1.3	*	.0	.1	.0	.0	.0	.0	.3	.0
4. NW3	*	97.	*	1.4	*	.0	.0	.0	.0	.0	.3	.0	.0

	*	CONC/LINK											
	*	(PPM)											
RECEPTOR	*	I	J	K	L	M	N	0	P	Q	R	S	T
1. NE3	*	.0	.3	.0	.0	.0	.0	.1	.0	.0	.0	.0	.0
2. SE3	*	.0	.0	.1	.1	.0	. 4	.0	.0	.0	.0	.0	.0
3. SW3	*	.1	. 2	.0	.0	.0	.0	.3	.0	.0	.0	.1	.0
4. NW3	*	.0	.6	.0	.0	.0	.0	.0	.1	.0	.0	.1	.0

CALINE4: CALIFORNIA LINE SOURCE DISPERSION MODEL JUNE 1989 VERSION

PAGE 1

JOB: DE SOTO AND VICTORY AMWP RUN: Hour 1 (WORST CASE ANGLE)

POLLUTANT: Carbon Monoxide

I. SITE VARIABLES

U=	.5	M/S	Z0=	100.	CM		ALT=	0.	(M)
BRG=	WORST	CASE	VD=	.0	CM/S				
CLAS=	7	(G)	VS=	.0	CM/S				
MIXH=	1000.	M	AMB=	.0	PPM				
SIGTH=	5.	DEGREES	TEMP=	15.6	DEGREE	(C)			

II. LINK VARIABLES

	LINK	*	LINK	COORDI	NATES	(M)	*			EF	Н	W
	DESCRIPTION	*		Y1		Y2	*	TYPE	VPH	(G/MI)	(M)	(M)
		_ * _					_ * -					
Α.	NF	*	7	-450	7	-150	*	AG	1101	2.1	.0	19.5
в.	NA	*	7	-150	7	0	*	AG	1029	3.4	.0	13.5
C.	ND	*	7	0	7	150	*	AG	1035	2.4	.0	13.5
D.	NE	*	7	150	7	450	*	AG	1035	2.1	.0	19.5
Ε.	SF	*	-7	450	-7	150	*	AG	1682	2.1	.0	19.5
F.	SA	*	-7	150	-7	0	*	AG	1593	3.7	.0	13.5
G.	SD	*	-7	0	-7	-150	*	AG	1982	2.9	.0	13.5
Η.	SE	*	-7	-150	-7	-450	*	AG	1982	2.1	.0	19.5
I.	WF	*	450	7	150	7	*	AG	2037	2.1	.0	19.5
J.	WA	*	150	7	0	7	*	AG	1519	3.4	.0	13.5
Κ.	WD	*	0	7	-150	7	*	AG	1676	2.4	.0	13.5
L.	WE	*	-150	7	-450	7	*	AG	1676	2.1	.0	19.5
Μ.	EF	*	-450	-7	-150	-7	*	AG	1224	2.1	.0	19.5
N.	EA	*	-150	-7	0	-7	*	AG	1139	3.3	.0	13.5
Ο.	ED	*	0	-7	150	-7	*	AG	1351	2.3	.0	13.5
P.	EE	*	150	-7	450	-7	*	AG	1351	2.1	.0	19.5
Q.	NL	*	0	0	2	-150	*	AG	72	3.4	.0	9.9
R.	SL	*	0	0	-2	150	*	AG	89	3.4	.0	9.9
S.	WL	*	0	0	150	2	*	AG	518	3.2	.0	9.9
т.	EL	*	0	0	-150	-2	*	AG	85	3.2	.0	9.9

III. RECEPTOR LOCATIONS

	*	COORD	INATES	(M)
RECEPTOR	*	X	Y	Z
	*			
1. NE3	*	17	17	1.8
2. SE3	*	17	-17	1.8
3. SW3	*	-17	-17	1.8
4. NW3	*	-17	17	1.8

	*		*	PRED	*			(CONC/1	LINK			
	*	BRG	*	CONC	*				(PPI	(P			
RECEPTOR	*	(DEG)	*	(PPM)	*	A	В	C	D	E	F	G	H
	*-		_ * .		_ * _								
1. NE3	*	187.	*	1.3	*	.0	. 4	.0	.0	.0	.0	.1	. 2
2. SE3	*	277.	*	1.2	*	.0	. 2	.0	.0	.0	.0	. 2	.0
3. SW3	*	81.	*	1.3	*	.0	.1	.0	.0	.0	.0	.3	.0
4. NW3	*	97.	*	1.4	*	.0	.0	.0	.0	.0	.3	.0	.0
	*						C	ONC/L	INK				

	*		CONC/LINK											
	*						(PPI	M)						
RECEPTOR	*	I	J	K	L	M	N	0	P	Q	R	S	T	
1. NE3	*	.0	.3	.0	.0	.0	.0	.1	.0	.0	.0	.0	.0	
2. SE3	*	.0	.0	.1	.1	.0	.5	.0	.0	.0	.0	.0	.0	
3. SW3	*	.1	. 2	.0	.0	.0	.0	. 4	.0	.0	.0	.1	.0	
4. NW3	*	.0	.6	.0	.0	.0	.0	.0	.1	.0	.0	.1	.0	

CALINE4: CALIFORNIA LINE SOURCE DISPERSION MODEL JUNE 1989 VERSION

PAGE 1

JOB: DE SOTO AND VICTORY PMNP

RUN: Hour 1 (WORST CASE ANGLE)

POLLUTANT: Carbon Monoxide

I. SITE VARIABLES

U=	.5	M/S	Z0=	100.	CM		ALT=	0.	(M)
BRG=	WORST	CASE	VD=	.0	CM/S				
CLAS=	7	(G)	VS=	.0	CM/S				
MIXH=	1000.	M	AMB=	.0	PPM				
SIGTH=	5.	DEGREES	TEMP=	15.6	DEGREE	(C)			

II. LINK VARIABLES

	LINK	*	LINK	COORDI	NATES	(M)	*			EF	Н	W
	DESCRIPTION	*	X1	Y1	X2	Y2	*	TYPE	VPH	(G/MI)	(M)	(M)
		_ * _					_ * -					
Α.	NF	*	7	-450	7	-150	*	AG	1784	2.1	.0	19.5
В.	NA	*	7	-150	7	0	*	AG	1711	4.2	.0	13.5
C.	ND	*	7	0	7	150	*	AG	1818	2.7	.0	13.5
D.	NE	*	7	150	7	450	*	AG	1818	2.1	.0	19.5
Ε.	SF	*	-7	450	-7	150	*	AG	1203	2.1	.0	19.5
F.	SA	*	-7	150	-7	0	*	AG	1095	3.7	.0	13.5
G.	SD	*	-7	0	-7	-150	*	AG	1288	2.4	.0	13.5
Н.	SE	*	-7	-150	-7	-450	*	AG	1288	2.1	.0	19.5
I.	WF	*	450	7	150	7	*	AG	1507	2.1	.0	19.5
J.	WA	*	150	7	0	7	*	AG	1251	3.2	.0	13.5
Κ.	WD	*	0	7	-150	7	*	AG	1403	2.3	.0	13.5
L.	WE	*	-150	7	-450	7	*	AG	1403	2.1	.0	19.5
Μ.	EF	*	-450	-7	-150	-7	*	AG	2482	2.1	.0	19.5
N.	EA	*	-150	-7	0	-7	*	AG	2036	3.7	.0	13.5
Ο.	ED	*	0	-7	150	-7	*	AG	2467	2.6	.0	13.5
P.	EE	*	150	-7	450	-7	*	AG	2467	2.1	.0	19.5
Q.	NL	*	0	0	2	-150	*	AG	73	3.4	.0	9.9
R.	SL	*	0	0	-2	150	*	AG	108	3.4	.0	9.9
s.	WL	*	0	0	150	2	*	AG	256	3.1	.0	9.9
Т.	EL	*	0	0	-150	-2	*	AG	446	3.1	.0	9.9

III. RECEPTOR LOCATIONS

	*	COORD	INATES	(M)
RECEPTOR	*	X	Y	Z
	*			
1. NE3	*	17	17	1.8
2. SE3	*	17	-17	1.8
3. SW3	*	-17	-17	1.8
4. NW3	*	-17	17	1.8

	*		*	PRED	*			(CONC/1	LINK			
	*	BRG	*	CONC	*				(PPI	(Iv			
RECEPTOR	*	(DEG)	*	(PPM)	*	A	В	C	D	E	F	G	H
	*-		_ * .		_ * _								
1. NE3	*	187.	*	1.6	*	.0	.8	.0	.0	.0	.0	.0	.1
2. SE3	*	277.	*	1.7	*	.0	. 4	.0	.0	.0	.0	.1	.0
3. SW3	*	83.	*	1.5	*	.0	. 2	.0	.0	.0	.0	. 2	.0
4. NW3	*	97.	*	1.3	*	.0	.0	. 2	.0	.0	. 2	.0	.0

	*					(CONC/	LINK					
	*						(PPI	M)					
RECEPTOR	*	I	J	K	L	M	N	0	P	Q	R	S	T
1. NE3	*	.0	. 2	.0	.0	.0	.0	. 2	.0	.0	.0	.0	.0
2. SE3	*	.0	.0	.0	.1	.0	.8	.0	.0	.0	.0	.0	.0
3. SW3	*	.1	.1	.0	.0	.0	.0	.7	.0	.0	.0	.0	.0
4. NW3	*	.0	.5	.0	.0	.0	.0	.1	. 2	.0	.0	.0	.0

CALINE4: CALIFORNIA LINE SOURCE DISPERSION MODEL JUNE 1989 VERSION

PAGE 1

JOB: DE SOTO AND VICTORY PMWP RUN: Hour 1 (WORST CASE ANGLE)

POLLUTANT: Carbon Monoxide

I. SITE VARIABLES

U=	.5	M/S	Z0=	100.	CM		ALT=	0.	(M)
BRG=	WORST	CASE	VD=	.0	CM/S				
CLAS=	7	(G)	VS=	.0	CM/S				
MIXH=	1000.	M	AMB=	.0	PPM				
SIGTH=	5.	DEGREES	TEMP=	15.6	DEGREE	(C)			

II. LINK VARIABLES

	LINK	*	LINK	COORDI	NATES	(M)	*			EF	Н	W
	DESCRIPTION	*		Y1		Y2	*	TYPE	VPH	(G/MI)	(M)	(M)
		_ * _					_ * -					
Α.	NF	*	7	-450	7	-150	*	AG	1804	2.1	.0	19.5
В.	NA	*	7	-150	7	0	*	AG	1724	4.2	.0	13.5
C.	ND	*	7	0	7	150	*	AG	1833	2.7	.0	13.5
D.	NE	*	7	150	7	450	*	AG	1833	2.1	.0	19.5
Ε.	SF	*	-7	450	-7	150	*	AG	1213	2.1	.0	19.5
F.	SA	*	-7	150	-7	0	*	AG	1102	3.7	.0	13.5
G.	SD	*	-7	0	-7	-150	*	AG	1314	2.4	.0	13.5
Η.	SE	*	-7	-150	-7	-450	*	AG	1314	2.1	.0	19.5
I.	WF	*	450	7	150	7	*	AG	1550	2.1	.0	19.5
J.	WA	*	150	7	0	7	*	AG	1279	3.2	.0	13.5
Κ.	WD	*	0	7	-150	7	*	AG	1433	2.3	.0	13.5
L.	WE	*	-150	7	-450	7	*	AG	1433	2.1	.0	19.5
Μ.	EF	*	-450	-7	-150	-7	*	AG	2508	2.1	.0	19.5
N.	EA	*	-150	-7	0	-7	*	AG	2062	3.7	.0	13.5
Ο.	ED	*	0	-7	150	-7	*	AG	2495	2.6	.0	13.5
P.	EE	*	150	-7	450	-7	*	AG	2495	2.1	.0	19.5
Q.	NL	*	0	0	2	-150	*	AG	80	3.4	.0	9.9
R.	SL	*	0	0	-2	150	*	AG	111	3.4	.0	9.9
s.	WL	*	0	0	150	2	*	AG	271	3.1	.0	9.9
Т.	EL	*	0	0	-150	-2	*	AG	446	3.1	.0	9.9

III. RECEPTOR LOCATIONS

	*	COORD	INATES	(M)
RECEPTOR	*	X	Y	Z
	*			
1. NE3	*	17	17	1.8
2. SE3	*	17	-17	1.8
3. SW3	*	-17	-17	1.8
4. NW3	*	-17	17	1.8

	*	BRG	*	PRED CONC	*			(CONC/I				
RECEPTOR	*	(DEG)	*	(PPM)	*	A	В	С	D	E	F	G	H
	*-		_ * .		_ * _								
1. NE3	*	187.	*	1.6	*	.0	.8	.0	.0	.0	.0	.0	.1
2. SE3	*	277.	*	1.7	*	.0	. 4	.0	.0	.0	.0	.1	.0
3. SW3	*	83.	*	1.5	*	.0	. 2	.0	.0	.0	.0	.2	.0
4. NW3	*	97.	*	1.4	*	.0	.0	. 2	.0	.0	. 2	.0	.0
	*						a	OMO /T	T 3 T 1 Z				

	*	CONC/LINK											
	*		(PPM)										
RECEPTOR	*	I	J	K	L	M	N	0	P	Q	R	S	Т
1. NE3	*	.0	. 2	.0	.0	.0	.0	. 2	.0	.0	.0	.0	.0
2. SE3	*	.0	.0	.0	.1	.0	.8	. 0	.0	.0	. 0	. 0	.0
3. SW3	*	.1	.1	.0	.0	.0	.0	.7	.0	.0	.0	.0	.0
4. NW3	*	.0	.5	.0	.0	.0	.0	.1	. 2	.0	.0	.0	.0

CALINE4: CALIFORNIA LINE SOURCE DISPERSION MODEL
JUNE 1989 VERSION

PAGE 1

JOB: WINNETKA AND US101 EB RAMPS AMNP RUN: Hour 1 (WORST CASE ANGLE)

POLLUTANT: Carbon Monoxide

I. SITE VARIABLES

U=	.5	M/S	Z0=	100.	CM		ALT=	0.	(M)
BRG=	WORST	CASE	VD=	.0	CM/S				
CLAS=	7	(G)	VS=	.0	CM/S				
MIXH=	1000.	M	AMB=	.0	PPM				
SIGTH=	5.	DEGREES	TEMP=	15.6	DEGREE	(C)			

II. LINK VARIABLES

	LINK	*	LINK	COORDI	NATES	(M)	*			EF	Н	W
	DED ORIEL LEON	*	X1	Y1		Y2				(G/MI)	(M)	(M)
		_ * _					_ * .					
Α.	NF	*	5	-450	5	-150	*	AG	836	2.1	.0	15.0
В.	NA	*	5	-150	5	0	*	AG	836	2.8	.0	9.9
C.	ND	*	5	0	5	150	*	AG	1021	2.2	.0	9.9
D.	NE	*	5	150	5	450	*	AG	1021	2.1	.0	15.0
Ε.	SF	*	-5	450	-5	150	*	AG	1428	2.1	.0	15.0
F.	SA	*	-5	150	-5	0	*	AG	951	2.9	.0	9.9
G.	SD	*	-5	0	-5	-150	*	AG	1181	2.2	.0	9.9
н.	SE	*	-5	-150	-5	-450	*	AG	1181	2.1	.0	15.0
I.	WF	*	450	2	150	2	*	AG	0	2.1	.0	10.5
J.	WA	*	150	2	0	2	*	AG	0	4.0	.0	9.9
Κ.	WD	*	0	2	-150	2	*	AG	0	2.6	.0	9.9
L.	WE	*	-150	2	-450	2	*	AG	0	2.1	.0	10.5
Μ.	EF	*	-450	-2	-150	-2	*	AG	626	2.1	.0	10.5
N.	EA	*	-150	-2	0	-2	*	AG	230	4.0	.0	9.9
Ο.	ED	*	0	-2	150	-2	*	AG	688	4.4	.0	9.9
P.	EE	*	150	-2	450	-2	*	AG	688	2.1	.0	10.5
Q.	NL	*	0	0	2	-150	*	AG	0	2.7	.0	9.9
R.	SL	*	0	0	-2	150	*	AG	477	2.9	.0	9.9
S.	WL	*	0	0	150	2	*	AG	0	4.0	.0	9.9
т.	EL	*	0	0	-150	-2	*	AG	396	4.4	.0	9.9

III. RECEPTOR LOCATIONS

	*	COORDI	NATES	(M)
RECEPTOR	*	X	Y	Z
	*			
1. NE3	*	12	8	1.8
2. SE3	*	12	-8	1.8
3. SW3	*	-12	-8	1.8
4. NW3	*	-12	8	1.8

	*	BRG	*	PRED CONC	*				CONC/ (PP				
RECEPTOR	*	(DEG)	*	(PPM)	*	A	В	С	D	E	F	G	H
	- * -		_ * .		_ * _								
1. NE3	*	264.	*	.7	*	.0	.0	.1	.0	.0	.1	.0	.0
2. SE3	*	354.	*	.9	*	.0	.0	.3	.0	.1	.1	.0	.0
3. SW3	*	6.	*	.9	*	.0	.0	.0	.0	.0	. 4	.0	.0
4. NW3	*	97.	*	.7	*	.0	.0	.0	.0	.0	. 2	.0	.0
	*						C	ONC/L	INK				
	*							(PPM)				
DFCFDTOD	*	т		T V		т	M	NT.	\circ	D	0	D	C

	*	* (PPM)											
RECEPTOR	*	I	J	K	L	M	N	0	P	Q	R	S	T
	*												
1. NE3	*	.0	.0	.0	.0	.0	.1	.0	.0	.0	.0	.0	.3
2. SE3	*	.0	.0	.0	.0	.0	.0	. 2	.0	.0	.1	.0	.0
3. SW3	*	.0	.0	.0	.0	.0	.0	.0	.0	.0	.1	.0	. 1
4. NW3	*	.0	.0	.0	.0	.0	.0	.3	.0	.0	.0	.0	. 0

CALINE4: CALIFORNIA LINE SOURCE DISPERSION MODEL
JUNE 1989 VERSION
PAGE 1

JOB: WINNETKA AND US101 EB RAMPS AMWP

RUN: Hour 1 (WORST CASE ANGLE)

POLLUTANT: Carbon Monoxide

I. SITE VARIABLES

U=	.5	M/S	Z0=	100.	CM		ALT=	0.	(M)
BRG=	WORST	CASE	VD=	.0	CM/S				
CLAS=	7	(G)	VS=	.0	CM/S				
MIXH=	1000.	M	AMB=	.0	PPM				
SIGTH=	5.	DEGREES	TEMP=	15.6	DEGREE	(C)			

II. LINK VARIABLES

	LINK	*	LINK	COORDI	NATES	(M)	*			EF	Н	W
	DESCRIPTION	*	X1	Y1	X2	Y2	*	TYPE	VPH	(G/MI)	(M)	(M)
		_ * _					_ * .					
A.	NF	*	5	-450	5	-150	*	AG	857	2.1	.0	15.0
в.	NA	*	5	-150	5	0	*	AG	857	2.8	.0	9.9
C.	ND	*	5	0	5	150	*	AG	1042	2.2	.0	9.9
D.	NE	*	5	150	5	450	*	AG	1042	2.1	.0	15.0
Ε.	SF	*	-5	450	-5	150	*	AG	1445	2.1	.0	15.0
F.	SA	*	-5	150	-5	0	*	AG	955	2.9	.0	9.9
G.	SD	*	-5	0	-5	-150	*	AG	1185	2.2	.0	9.9
Н.	SE	*	-5	-150	-5	-450	*	AG	1185	2.1	.0	15.0
I.	WF	*	450	2	150	2	*	AG	0	2.1	.0	10.5
J.	WA	*	150	2	0	2	*	AG	0	4.2	.0	9.9
К.	WD	*	0	2	-150	2	*	AG	0	2.6	.0	9.9
L.	WE	*	-150	2	-450	2	*	AG	0	2.1	.0	10.5
Μ.	EF	*	-450	-2	-150	-2	*	AG	626	2.1	.0	10.5
N.	EA	*	-150	-2	0	-2	*	AG	230	4.2	.0	9.9
Ο.	ED	*	0	-2	150	-2	*	AG	701	4.4	.0	9.9
P.	EE	*	150	-2	450	-2	*	AG	701	2.1	.0	10.5
Q.	NL	*	0	0	2	-150	*	AG	0	2.7	.0	9.9
R.	SL	*	0	0	-2	150	*	AG	490	2.9	.0	9.9
s.	WL	*	0	0	150	2	*	AG	0	4.2	.0	9.9
Т.	EL	*	0	0	-150	-2	*	AG	396	4.4	.0	9.9

III. RECEPTOR LOCATIONS

	*	COORD	INATES	(M)
RECEPTOR	* \$	X	Y	Z
	*			
1. NE3	*	12	8	1.8
2. SE3	*	12	-8	1.8
3. SW3	*	-12	-8	1.8
4. NW3	*	-12	8	1.8

	*		*	PRED	*			(CONC/	LINK			
	*	BRG	*	CONC	*				(PPI	(Iv			
RECEPTOR	*	(DEG)	*	(PPM)	*	A	В	C	D	E	F	G	H
	*-		_ * .		_*_								
1. NE3	*	264.	*	.8	*	.0	.0	.1	.0	.0	.1	.0	.0
2. SE3	*	354.	*	.9	*	.0	.0	.3	.0	.1	.1	.0	.0
3. SW3	*	6.	*	1.0	*	.0	.0	.0	.0	.0	. 4	.0	.0
4. NW3	*	97.	*	.7	*	.0	.0	.0	.0	.0	.2	.0	.0
	*						C	ONC/L	INK				
	*							/ DDM	١				

	*	CONC/LINK												
	*		(PPM)											
RECEPTOR	*	I	J	K	L	M	N	0	P	Q	R	S	T	
1. NE3	*	.0	.0	.0	.0	.0	.1	.0	.0	.0	.0	.0	.3	
2. SE3	*	.0	.0	.0	.0	.0	.0	. 2	.0	.0	.1	.0	.0	
3. SW3	*	.0	.0	.0	.0	.0	.0	.0	.0	.0	.1	.0	.1	
4. NW3	*	.0	.0	.0	.0	.0	.0	. 4	.0	.0	.0	.0	.0	

CALINE4: CALIFORNIA LINE SOURCE DISPERSION MODEL JUNE 1989 VERSION

PAGE 1

JOB: WINNETKA AND US101 EB RAMPS PMNP RUN: Hour 1 (WORST CASE ANGLE)

POLLUTANT: Carbon Monoxide

I. SITE VARIABLES

U=	.5	M/S	Z0=	100.	CM		ALT=	0.	(M)
BRG=	WORST	CASE	VD=	.0	CM/S				
CLAS=	7	(G)	VS=	.0	CM/S				
MIXH=	1000.	M	AMB=	.0	PPM				
SIGTH=	5.	DEGREES	TEMP=	15.6	DEGREE	(C)			

II. LINK VARIABLES

	LINK	*	LINK	COORDI	NATES	(M)	*			EF	Н	W
	DESCRIPTION	*	X1	Y1	X2	Y2	*	TYPE	VPH	(G/MI)	(M)	(M)
		_ * _					_ * -					
Α.	NF	*	5	-450	5	-150	*	AG	996	2.1	.0	15.0
В.	NA	*	5	-150	5	0	*	AG	996	2.9	.0	9.9
C.	ND	*	5	0	5	150	*	AG	1148	2.2	.0	9.9
D.	NE	*	5	150	5	450	*	AG	1148	2.1	.0	15.0
Ε.	SF	*	-5	450	-5	150	*	AG	1070	2.1	.0	15.0
F.	SA	*	-5	150	-5	0	*	AG	710	2.8	.0	9.9
G.	SD	*	-5	0	-5	-150	*	AG	909	2.2	.0	9.9
Η.	SE	*	-5	-150	-5	-450	*	AG	909	2.1	.0	15.0
I.	WF	*	450	2	150	2	*	AG	0	2.1	.0	10.5
J.	WA	*	150	2	0	2	*	AG	0	4.0	.0	9.9
Κ.	WD	*	0	2	-150	2	*	AG	0	2.6	.0	9.9
L.	WE	*	-150	2	-450	2	*	AG	0	2.1	.0	10.5
Μ.	EF	*	-450	-2	-150	-2	*	AG	630	2.1	.0	10.5
N.	EA	*	-150	-2	0	-2	*	AG	199	4.0	.0	9.9
Ο.	ED	*	0	-2	150	-2	*	AG	639	4.4	.0	9.9
P.	EE	*	150	-2	450	-2	*	AG	639	2.1	.0	10.5
Q.	NL	*	0	0	2	-150	*	AG	0	2.7	.0	9.9
R.	SL	*	0	0	-2	150	*	AG	360	2.8	.0	9.9
S.	WL	*	0	0	150	2	*	AG	0	4.0	.0	9.9
Т.	EL	*	0	0	-150	-2	*	AG	431	4.4	.0	9.9

III. RECEPTOR LOCATIONS

	*	COORDI	NATES	(M)
RECEPTOR	*	X	Y	Z
	*			
1. NE3	*	12	8	1.8
2. SE3	*	12	-8	1.8
3. SW3	*	-12	-8	1.8
4. NW3	*	-12	8	1.8

	*	BRG	*	PRED CONC	*			(CONC/I				
RECEPTOR	*	(DEG)	*	(PPM)	*	Α	В	C	D	E	F	G	H
1. NE3 2. SE3 3. SW3	* *	185. 354. 5.				.0	.4	.0	.0 .0 .1	.0 .1 .0	.0	.0	.1
4. NW3	*	174.	*	.7	*	.0	.1	.0	.0	.0	.0	.3	.0
	*						С	ONC/L	INK				

	*	CONC/LINK													
	*		(PPM)												
RECEPTOR	*	I	J	K	L	M	N	0	P	Q	R	S	T		
1. NE3	*	.0	.0	.0	.0	.0	.0	. 2	.0	.0	.0	.0	.0		
2. SE3	*	.0	.0	.0	.0	.0	.0	. 2	.0	.0	.0	.0	.0		
3. SW3	*	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.1		
4. NW3	*	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.1		

CALINE4: CALIFORNIA LINE SOURCE DISPERSION MODEL
JUNE 1989 VERSION
PAGE 1

JOB: WINNETKA AND US101 EB RAMPS PMWP

RUN: Hour 1 (WORST CASE ANGLE)

POLLUTANT: Carbon Monoxide

I. SITE VARIABLES

U=	.5	M/S	Z0=	100.	CM		ALT=	0.	(M)
BRG=	WORST	CASE	VD=	.0	CM/S				
CLAS=	7	(G)	VS=	.0	CM/S				
MIXH=	1000.	M	AMB=	.0	PPM				
SIGTH=	5.	DEGREES	TEMP=	15.6	DEGREE	(C)			

II. LINK VARIABLES

	LINK	*	LINK	COORDINATES ((M)	*		EF	Н	W	
	DESCRIPTION	*	X1	Y1 X2		Y2	*	TYPE	VPH	(G/MI)	(M)	(M)
		_ * _					_*.					
A.	NF	*	5	-450	5	-150	*	AG	1005	2.1	.0	15.0
в.	NA	*	5	-150	5	0	*	AG	1005	2.9	.0	9.9
C.	ND	*	5	0	5	150	*	AG	1157	2.2	.0	9.9
D.	NE	*	5	150	5	450	*	AG	1157	2.1	.0	15.0
Ε.	SF	*	-5	450	-5	150	*	AG	1122	2.1	.0	15.0
F.	SA	*	-5	150	-5	0	*	AG	723	2.8	.0	9.9
G.	SD	*	-5	0	-5	-150	*	AG	922	2.2	.0	9.9
н.	SE	*	-5	-150	-5	-450	*	AG	922	2.1	.0	15.0
I.	WF	*	450	2	150	2	*	AG	0	2.1	.0	10.5
J.	WA	*	150	2	0	2	*	AG	0	4.0	.0	9.9
Κ.	WD	*	0	2	-150	2	*	AG	0	2.6	.0	9.9
L.	WE	*	-150	2	-450	2	*	AG	0	2.1	.0	10.5
Μ.	EF	*	-450	-2	-150	-2	*	AG	630	2.1	.0	10.5
N.	EA	*	-150	-2	0	-2	*	AG	199	4.0	.0	9.9
Ο.	ED	*	0	-2	150	-2	*	AG	678	4.4	.0	9.9
P.	EE	*	150	-2	450	-2	*	AG	678	2.1	.0	10.5
Q.	NL	*	0	0	2	-150	*	AG	0	2.7	.0	9.9
R.	SL	*	0	0	-2	150	*	AG	399	2.8	.0	9.9
S.	WL	*	0	0	150	2	*	AG	0	4.0	.0	9.9
Т.	EL	*	0	0	-150	-2	*	AG	431	4.4	.0	9.9

III. RECEPTOR LOCATIONS

	*	COORDI	NATES	(M)
RECEPTOR	*	X	Y	Z
	*			
1. NE3	*	12	8	1.8
2. SE3	*	12	-8	1.8
3. SW3	*	-12	-8	1.8
4. NW3	*	-12	8	1.8

	*	BRG		PRED CONC	*			(CONC/I				
RECEPTOR	*	(DEG)	*	(/	*	A	В	C	D	E	F	G	H
	* _		_ * -		_ * _								
1. NE3	*	185.	*	.8	*	.0	. 4	.0	.0	.0	.0	.0	.1
2. SE3	*	354.	*	.9	*	.0	.0	.3	.0	.1	.0	.0	.0
3. SW3	*	5.	*	.8	*	.0	.0	.0	.1	.0	.3	.0	.0
4. NW3	*	174.	*	.7	*	.0	.1	.0	.0	.0	.0	.3	.0
							~	OMO /T					

	*	CONC/LINK (PPM)											
RECEPTOR	*	I	J	K	L	M	N	0	P	Q	R	S	Т
1. NE3	*	.0	.0	.0	.0	.0	.0	. 2	.0	.0	.0	.0	.0
2. SE3	*	.0	.0	.0	.0	.0	.0	. 2	.0	.0	.0	. 0	.0
3. SW3	*	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.1
4. NW3	*	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	. 0	.1

APPENDIX C

TRAFFIC IMPACT STUDY

DRAFT

TRAFFIC AND PARKING STUDY FOR THE PIERCE COLLEGE FACILITIES MASTER PLAN UPDATE ENVIRONMENTAL IMPACT REPORT

JANUARY 2010

PREPARED FOR

ICF/JONES & STOKES

PREPARED BY

DRAFT

TRAFFIC AND PARKING STUDY FOR THE PIERCE COLLEGE FACILITIES MASTER PLAN UPDATE ENVIRONMENTAL IMPACT REPORT

January 2010

Prepared for:

ICF JONES & STOKES

Prepared by:

FEHR & PEERS

201 Santa Monica Boulevard, Suite 500 Santa Monica, California 90401 (310) 458-9916

Ref: OC09-0135

TABLE OF CONTENTS

l.	Introduction	
	Project Description	1
	Study Scope	
	Organization of Report	6
II.	Existing Conditions	7
	Existing Street System	7
	Existing Traffic Volumes and Operating Conditions	
	Existing Public Transit Service	
	Pierce College Campus Access and Internal Circulation System	
	Existing Pierce College Parking Conditions	
III.	Future Traffic Projections	29
	Cumulative Base Traffic Projections	
	Baseline Transportation System Improvements	
	Project Traffic Projections	
	Cumulative plus Project Traffic Projections	53
IV.	Traffic Impact Analysis	64
	Criteria for Determination of Significant Traffic Impact	
	Cumulative Base Intersection Operating Conditions	
	Project Traffic Impact Analysis	
	Traffic Mitigation Measures	
V.	Neighborhood Impact Analysis	71
	Daily Traffic Projections	
	Neighborhood Impact Significance Criteria	
	Assessment of Significant Traffic Impact	
VI.	Congestion Management Program Analysis	75
	CMP Traffic Impact Analysis	
	CMP Transit Impact Analysis	
VII.	Parking and Site Access Impact Analysis	85
	Future Parking Supply	
	Projected Peak Parking Needs	86
	Parking Supply and Demand Analysis	87
	Project Access Plan	
	Level of Service at Project Access Points	
VIII.	Summary and Conclusions	90

Intersection Configurations
AM and PM Peak Hour Intersection Turning Movements
Intersection Level of Service Worksheets

Appendix A: Appendix B: Appendix C: Appendix D: Pierce College Parking Utilization Survey Data

LIST OF FIGURES

1	Los Angeles Pierce College – Illustrative Master Plan	3
2	Study Area and Analyzed Intersections	
3	Existing (2008-2009) Weekday Peak Hour Traffic Volumes	
4	Existing Transit Service	21
5	Locations of Existing Parking Facilities Serving Pierce College Campus	23
6	Existing Pierce College Parking Utilization by Time of Day	
7	Existing plus Ambient Weekday Peak Hour Traffic Volumes	31
8	Location of Related Projects	35
9	Related Projects Only Weekday Peak Hour Traffic Volumes	37
10	2002-2009 FTE Removed Weekday Peak Hour Traffic Volumes	42
11	Cumulative Base (2015) Weekday Peak Hour Traffic Volumes	47
12	Generalized Project Trip Distribution Pattern	54
13	Academic Project Trip Distribution	55
14	Project-Generated Trips: Campus Academic Growth	
	Weekday Peak Hour Traffic Volumes	56
15	Cumulative plus Project (2015) Weekday Peak Hour Traffic Volumes	60
16	Winnetka Avenue & Victory Boulevard – Proposed Intersection Mitigation	69

LIST OF TABLES

<u>NO.</u>		
1	Level of Service Definitions for Signalized Intersections	16
2	Existing (Year 2008-2009) Intersection Levels of Service	18
3	Existing Pierce College Parking Inventory by Lot	24
4	Summary of Existing Pierce College Parking Inventory and Utilization	27
5	Trip Generation Estimates for Related Projects	36
6	Pierce College Facilities Master Plan Update Trip Generation Estimates:	
	Academic Growth	46
7	Distribution of ZIP Codes of Residence – Pierce College Students	
	Fall 2004	53
8	Intersection Level of Service Analysis	
	Cumulative Base and Cumulative plus Project Conditions	
9	Neighborhood Traffic Impact Analysis	
10	Level of Service Definitions for Freeway Mainline Segments	
11	CMP Arterial Intersection Impact Analysis	
12	CMP Freeway Mainline Impact Analysis	
13	CMP Transit Analysis	
14	Summary of Existing and Projected Parking Supply	86
15	Pierce College Facilities Master Plan, Peak Parking Analysis:	
	Academic Growth	88

I. INTRODUCTION

This report documents the results of a study evaluating potential traffic and parking impacts of the proposed Pierce College Facilities Master Plan update. The study was conducted by Fehr & Peers in support of the supplemental environmental impact report (EIR) for the Master Plan update.

PROJECT DESCRIPTION

The Pierce College campus is located in the western portion of the San Fernando Valley in the City of Los Angeles. The campus encompasses an area generally bounded by Winnetka Avenue on the east, Victory Boulevard on the north, De Soto Avenue on the west, and residential uses on the south. Based on information provided by the University, the existing student full-time equivalent (FTE) was 16,079 for the 2008-2009 academic year. Due to State budget cuts, the existing FTE declined from 16,079 to an estimated 14,763 for the 2009-2010 academic year. Over the buildout period of the Master Plan to Year 2015, enrollment is projected to increase at a modest rate to a projected FTE of about 15,500.

The proposed Facilities Master Plan envisions a series of improvements to the campus academic-related facilities, including new or renovated academic buildings and facilities, campus parking facilities, and support facilities. Previous versions of the Pierce College Master Plan included one or more proposed public/private partnership projects, however; these components have been removed from the project description and are therefore not included in this current traffic analysis.

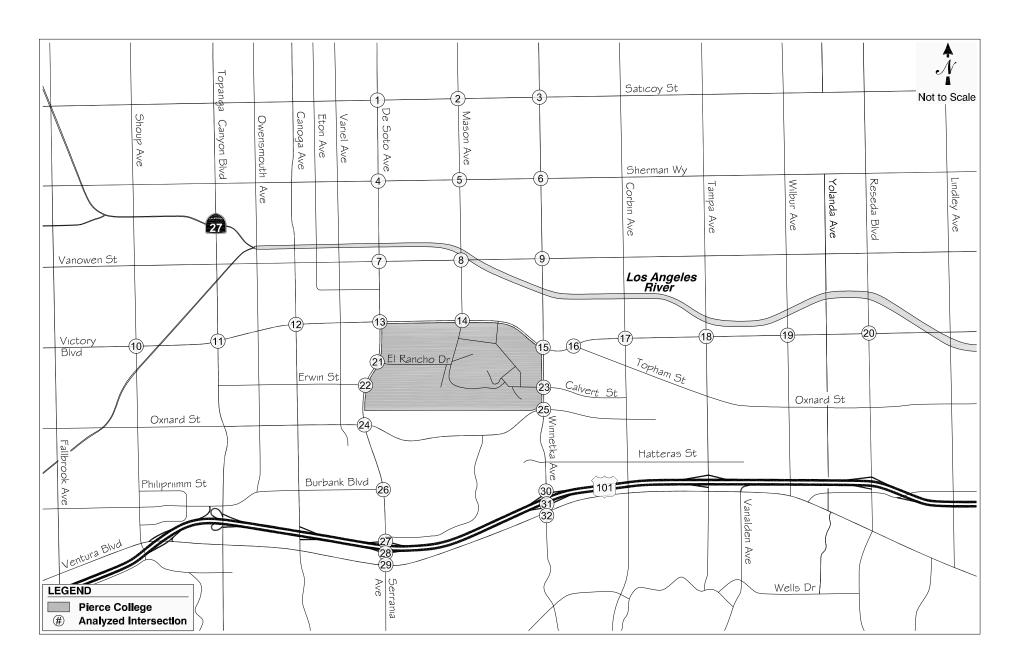
Existing and future vehicular access to the Pierce College campus is and would be obtained via four access points: Brahma Drive via a signalized intersection with Winnetka Avenue, an unsignalized driveway onto Victory Boulevard from Parking Lot 7, Mason Street via a signalized intersection with Victory Boulevard, and El Rancho Drive via a signalized intersection with De Soto Avenue. There are presently approximately 3,719 parking spaces on campus (including

an estimated 85 unmarked spaces in dirt parking areas), provided in a number of both large and small parking lots and as curb parking along internal roadways. An estimated 3,958 parking spaces would be provided on campus at buildout of the Master Plan.

The proposed illustrative master plan is presented in Figure 1. Further project description data is presented as appropriate in the discussions of trip generation and parking impacts later in this report.

STUDY SCOPE

The study analyzed the potential project-generated traffic impacts on the street and highway system surrounding and serving the Pierce College campus. The following traffic scenarios were analyzed in the study:


- <u>Existing (Year 2009) Conditions</u> The analysis of existing traffic conditions provided a
 basis for the remainder of the study. The existing conditions analysis included an
 assessment of streets, traffic volumes, operating conditions, transit services, and oncampus parking conditions.
- Year 2015 Cumulative Base (No Project) Conditions The objective of this scenario was
 to project future traffic growth and operating conditions that could be expected to result
 from regional growth and related projects in the vicinity of the project site, without
 consideration of the proposed project.
- Year 2015 Cumulative plus Project Conditions The objective of this scenario was to identify potential impacts of the proposed project on projected future traffic operating conditions with traffic expected to be generated by buildout of the proposed Master Plan added to the cumulative base traffic forecasts.

Buildout of the campus Master Plan is projected by 2015. Thus, potential project traffic impacts are evaluated against projected Year 2015 cumulative conditions.

The potential for project impacts is evaluated in the study for weekday AM and PM peak hours of traffic at 32 intersections in the west San Fernando Valley near the Pierce College campus. The analysis locations are illustrated in Figure 2 and are as follows:

- 1. De Soto Avenue & Saticoy Street
- 2. Mason Avenue & Saticoy Street
- 3. Winnetka Avenue & Saticoy Street
- 4. De Soto Avenue & Sherman Way
- 5. Mason Avenue & Sherman Way
- 6. Winnetka Avenue & Sherman Way
- 7. De Soto Avenue & Vanowen Street
- 8. Mason Avenue & Vanowen Street
- 9. Winnetka Avenue & Vanowen Street
- 10. Shoup Avenue & Victory Boulevard
- 11. Topanga Canyon Boulevard & Victory Boulevard
- 12. Canoga Avenue & Victory Boulevard
- 13. De Soto Avenue & Victory Boulevard
- 14. Mason Avenue & Victory Boulevard
- 15. Winnetka Avenue & Victory Boulevard
- 16. Topham Street & Victory Boulevard
- 17. Corbin Avenue & Victory Boulevard
- 18. Tampa Avenue & Victory Boulevard
- 19. Wilbur Avenue & Victory Boulevard
- 20. Reseda Avenue & Victory Boulevard
- 21. De Soto Avenue & El Rancho Drive
- 22. De Soto Avenue & Erwin Street
- 23. Winnetka Avenue & Calvert Street/Brahma Drive
- 24. De Soto Avenue & Oxnard Street
- 25. Winnetka Avenue & Oxnard Street
- 26. De Soto Avenue & Burbank Boulevard (west)
- 27. De Soto Avenue & US 101 westbound ramps
- 28. De Soto Avenue & US 101 eastbound ramps
- 29. De Soto Avenue & Ventura Boulevard
- 30. Winnetka Avenue & US 101 westbound ramps
- 31. Winnetka Avenue & US 101 eastbound ramps
- 32. Winnetka Avenue & Ventura Boulevard

The study also evaluates the adequacy of the proposed future on-campus parking supply to accommodate projected campus parking demands.

Finally, the study includes an analysis of potential project impacts on the regional highway and transit systems in accordance with requirements of the Los Angeles County Congestion Management Program (CMP).

ORGANIZATION OF REPORT

This report is divided into eight chapters. Chapter II describes the existing circulation system, traffic volumes, and traffic conditions within the study area. Chapter II also describes the existing Pierce College access and circulation system and analyzes existing parking conditions on the campus. The methodologies used to forecast future cumulative and project traffic volumes, and the resultant forecasts, are described in Chapter III. Chapter IV presents an assessment of potential traffic impacts and identifies potential traffic mitigation measures. An analysis of potential impacts on neighborhood streets is presented in Chapter V. Chapter VI presents the results of the Congestion Management Program regional transportation system impact analysis. Chapter VII contains an analysis of potential impacts of the project on campus parking conditions and site access. Finally, conclusions and recommendations of the study are summarized in Chapter VIII.

II. EXISTING CONDITIONS

A comprehensive data collection effort was undertaken to develop a detailed description of existing transportation and parking conditions within and adjacent to the Pierce College campus. The assessment of existing conditions relevant to this study included street system, traffic volumes and operating conditions, public transit service, campus access system, and existing parking conditions on the Pierce College campus.

EXISTING STREET SYSTEM

The Pierce College campus is bounded by Victory Boulevard on the north, Winnetka Avenue on the east, and De Soto Avenue on the west. To the north, east, and west of the campus, the street system is a north-south/east-west grid system. To the south of the campus, the street grid is disrupted by the Chalk Hills and, further to the south beyond Ventura Boulevard, the Santa Monica Mountains.

The street system in the study area is illustrated in Figure 2. Primary regional access to the area is provided by the Ventura Freeway (U.S. 101), which runs east-west approximately one mile south of the campus. Winnetka Avenue and De Soto Avenue on either side of the campus are north-south arterial facilities providing access to the Ventura Freeway. Victory Boulevard is an east-west arterial facility. Mason Avenue is a secondary highway providing access to the campus to/from the north.

Additional arterial facilities serving the surrounding study area include Topanga Canyon Boulevard, Canoga Avenue, Tampa Avenue, and Reseda Avenue running north-south and Saticoy Street, Sherman Way, and Ventura Boulevard running east-west.

Descriptions of key roadways serving the study area are provided below:

- Ventura Freeway (U.S. 101) The Ventura Freeway is a major regional facility that travels in an east-west orientation through the southern portion of the study area. The freeway provides access from the study area to the eastern San Fernando Valley and metropolitan Los Angeles to the east and to the Agoura/Westlake areas and Ventura County to the west. Key interchanges providing access to the Pierce College Campus are full diamond interchanges at Winnetka Avenue and De Soto Avenue. In the study area, the freeway provides 10 lanes (five in each direction) east of Topanga Canyon Boulevard and eight lanes (four in each direction) west of Topanga Canyon Boulevard.
- Shoup Avenue Shoup Avenue is a north-south street located about 1.5 miles west of Pierce College. It is classified as a secondary highway north of, and a collector street south of, Ventura Boulevard. North of Ventura Boulevard to Roscoe Boulevard, Shoup Avenue provides four through lanes, with on-street parking.
- Topanga Canyon Boulevard (SR 27) Topanga Canyon Boulevard is a north-south major highway located about one mile west of the Pierce College campus. Topanga Canyon provides access across the Santa Monica Mountains to Pacific Coast Highway (SR 1) to the south, and to the Simi Valley Freeway (SR 118) and the northwestern portion of the San Fernando Valley to the north. Four through lanes are provided north of Vanowen Street, five through lanes (three northbound and two southbound) are provide between Vanowen Street and Burbank Boulevard, and six through lanes are provided south of Burbank Boulevard. A raised median island is present south of Burbank Boulevard. Onstreet parking is prohibited along the east side of the roadway throughout the Warner Center area, although it is allowed along most of the west side within Warner Center and on both sides north of Vanowen Street. The City of Los Angeles Draft Bicycle Plan (Los Angeles Department of City Planning, September 2009) proposes Class II bike lanes along Topanga Canyon Boulevard north of Hart Street in the study area.
- <u>Canoga Avenue</u> Canoga Avenue is a north-south street located about one-half mile west of the Pierce College campus. It is classified as a major highway between Ventura Boulevard and Victory Boulevard and as a secondary highway both to the north of Victory Boulevard and to the south of Ventura Boulevard. Six through lanes are provided between Victory Boulevard and the Ventura Freeway. Four through lanes are provided to the north of Victory Boulevard and between the Ventura Freeway and Ventura Boulevard, narrowing to two lanes south of Ventura Boulevard. A raised median island is present between Victory Boulevard and Burbank Boulevard. On-street parking is prohibited along much of Canoga Avenue within the study area, although unrestricted parking is allowed south of Ventura Boulevard and along the west side north of Hart Street.
- <u>De Soto Avenue</u> De Soto Avenue is a north-south street that forms the western boundary of the Pierce College campus. It is classified as a major highway north of Ventura Boulevard and as a collector street south of Ventura Boulevard (where the street changes name to Serrania Avenue). Four through lanes are provided north of Victory Boulevard, six lanes are provided between Victory Boulevard and the Ventura Freeway, five lanes (three northbound and two southbound) are provided between the freeway and Ventura Boulevard, and two lanes are provided south of Ventura Boulevard. On-street parking is prohibited along De Soto Avenue between Victory Boulevard and Ventura Boulevard.

Parking is allowed north of Victory Boulevard, although peak period parking restrictions are used in this section to provide a third southbound travel lane during the morning peak period and a third northbound travel lane during the evening peak period. Unrestricted parking is allowed south of Ventura Boulevard on Serrania Avenue. Bicycle lanes are present on both sides between the Pierce College driveway (El Rancho Drive) and Burbank Boulevard. The City of Los Angeles *Draft Bicycle Plan* identifies De Soto Avenue south of Victory Boulevard as having Class II bike lanes and De Soto Avenue between Victory Boulevard and Sherman Way as having Class III bike routes within the study area.

- Mason Avenue Mason Avenue is a north-south secondary highway providing access between Pierce College and areas to the north. Mason Avenue terminates as a public street at its intersection with Victory Boulevard on the north side of the campus, and continues within the campus as an internal campus roadway. Mason Avenue provides four through lanes with on-street parking.
- Winnetka Avenue Winnetka Avenue is a north-south street forming the eastern boundary
 of the Pierce College campus. It is classified as a major highway north of, and a collector
 street south of, Ventura Boulevard. Four through lanes and a two-way continuous left-turn
 lane are provided north of Ventura Boulevard, and two lanes are provided south of
 Ventura Boulevard. On-street parking is allowed both north of Calvert Street/Pierce
 College driveway (Brahma Drive) and south of Ventura Boulevard, but is prohibited
 between Calvert Street and Ventura Boulevard.
- <u>Corbin Avenue</u> Corbin Avenue is a north-south secondary highway located one-half mile east of Pierce College. In the study area, four through lanes are present north of Topham Street and two through lanes are present south of Topham Street. On-street parking is provided.
- <u>Tampa Avenue</u> Tampa Avenue is a north-south major highway located one mile east of Pierce College. Tampa Avenue provides four through lanes with on-street parking during off-peak hours. During peak periods, street parking is prohibited to provide additional travel lanes.
- <u>Wilbur Avenue</u> Wilbur Avenue is a north-south secondary highway located 1.5 miles east of Pierce College. Wilbur Avenue provides four through lanes with on-street parking.
- Reseda Avenue Reseda Avenue is a north-south major highway located two miles east of Pierce College. In the study area, Reseda Avenue provides four through lanes with onstreet parking.
- <u>Saticoy Street</u> Saticoy Street is a four-lane east-west secondary highway located about 1.5 miles north of Pierce College. A two-way continuous left-turn lane is provided throughout most of the study area, as is on-street parking.
- Sherman Way Sherman Way is an east-west major highway located about one mile north of Pierce College. It is classified as a divided major highway east of Variel Avenue, where six through lanes and a raised median island are provided. West of Variel Avenue, it is classified as a major highway and provides four through lanes and a two-way continuous left-turn lane. On-street parking is allowed throughout the study area.

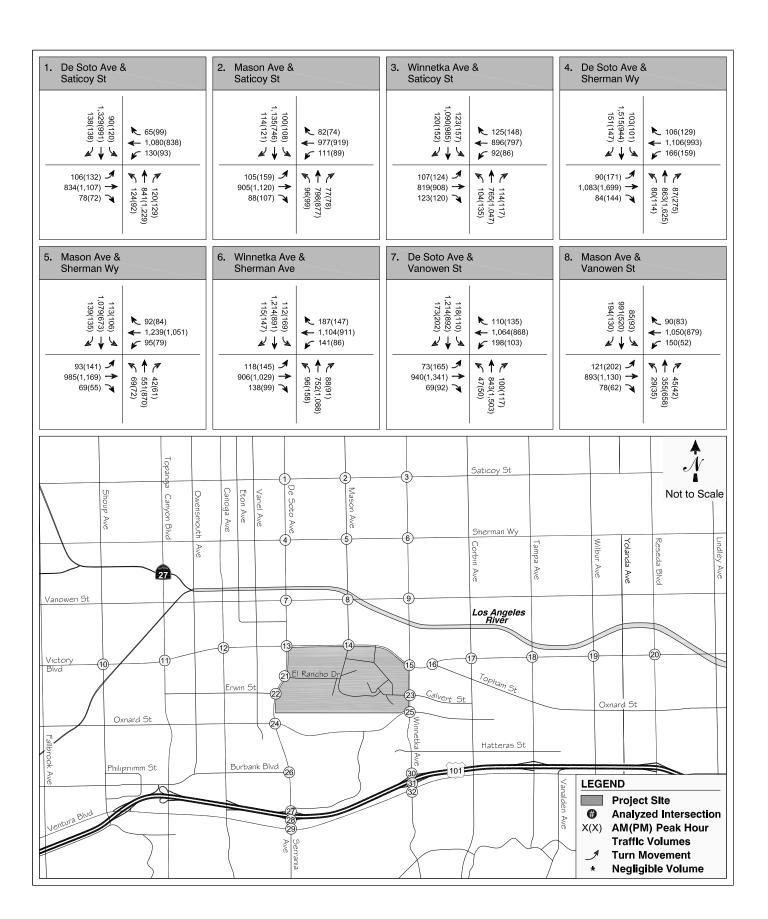
- <u>Vanowen Street</u> Vanowen Street is a four-lane east-west secondary highway located about one-half mile north of the Pierce College campus. On-street parking is permitted on the north side throughout the study area, and on the south side in certain sections.
- Victory Boulevard Victory Boulevard is an east-west major highway with a two-way continuous left-turn lane throughout the study area. Four through lanes are provided from east of Fallbrook Avenue to Topanga Canyon Boulevard. Six through lanes are provided between Topanga Canyon Boulevard and De Soto Avenue within Warner Center, with some sections of eight lanes. Five through lanes (three eastbound and two westbound) are provided east of De Soto Avenue to Winnetka Avenue adjacent to the Pierce College campus. Four through lanes are provided east of Winnetka Avenue. On-street parking is allowed east of De Soto Avenue. Parking restrictions are used along the north side east of De Soto Avenue to provide a third westbound travel lane during both the morning and evening peak periods.
- Oxnard Street Oxnard Street is an east-west secondary highway located to the south of the Pierce College campus. Four lanes are provided throughout most of the study area, narrowing to two lanes both west of Shoup Avenue and east of Winnetka Avenue. A raised median island is present between Topanga Canyon Boulevard and Canoga Avenue. On-street parking is prohibited between Topanga Canyon Boulevard and De Soto Avenue in Warner Center, but is allowed to the east of De Soto Avenue. The City of Los Angeles Draft Bicycle Plan identifies Oxnard Street as having Class II bike lanes throughout the study area.
- <u>Burbank Boulevard</u> West of De Soto Avenue, Burbank Boulevard is an east-west secondary highway providing four through lanes between De Soto Avenue and Farralone Avenue. On-street parking is allowed between Canoga Avenue and Topanga Canyon Boulevard. At De Soto Avenue, Burbank Boulevard jogs to the south and continues to the east as a two-lane collector street with on-street parking.
- Ventura Boulevard Ventura Boulevard is an east-west major highway located about one mile south of the Pierce College campus. Three through lanes are provided in the westbound direction throughout most of the study area, although two lanes are provided east of Winnetka Avenue. In the eastbound direction, two through lanes are provided west of West Hills Drive, three lanes are provided between West Hills Drive and the Chalk Hill summit, two lanes east of the summit, three lanes are provided approaching Winnetka Avenue, and two lanes are provided east of Winnetka Avenue. On-street parking is allowed throughout most of the study area, although parking restrictions are used to provide a third eastbound through lane during both the morning and evening peak periods in the sections between Topanga Canyon Boulevard and West Hills Drive and east of Winnetka Avenue. Parking is also restricted along the south side of Ventura Boulevard immediately adjacent to Taft High School (west of Winnetka Avenue) on school days. A raised median island is present for short sections just east of West Hills Drive (over the Chalk Hill summit).

Diagrams of the existing lane configurations at the 32 study intersections are provided in Appendix A to this report.

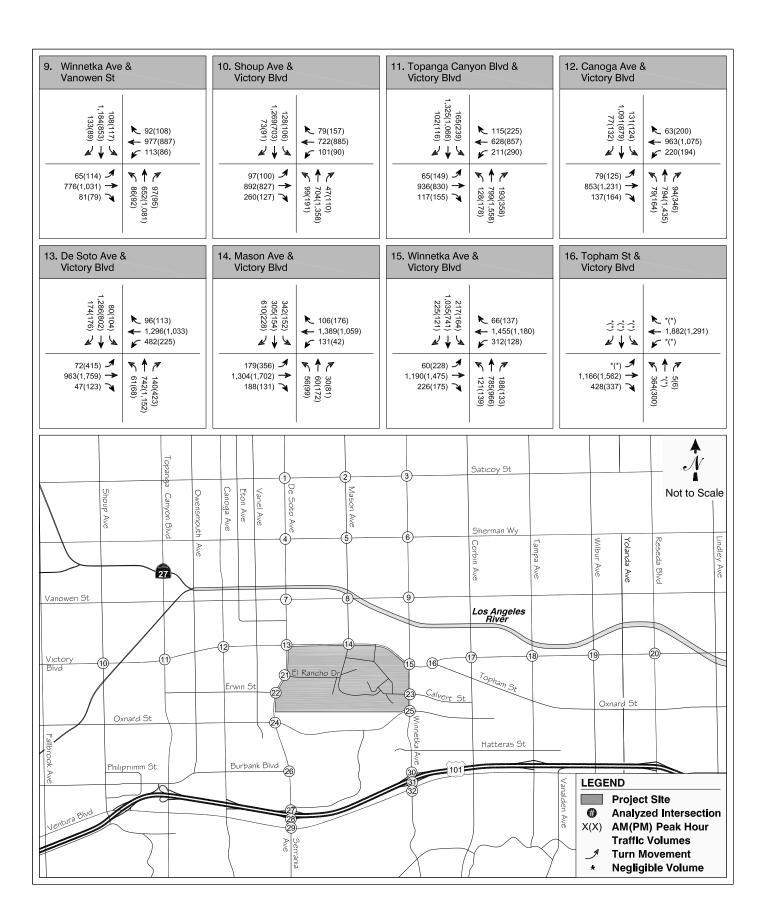
EXISTING TRAFFIC VOLUMES AND OPERATING CONDITIONS

The following sections present the existing peak hour traffic volumes at the study intersections, a description of the methodology used to analyze intersection operating conditions, and the resulting level of service at each location under existing conditions.

Existing Peak Hour Traffic Volumes

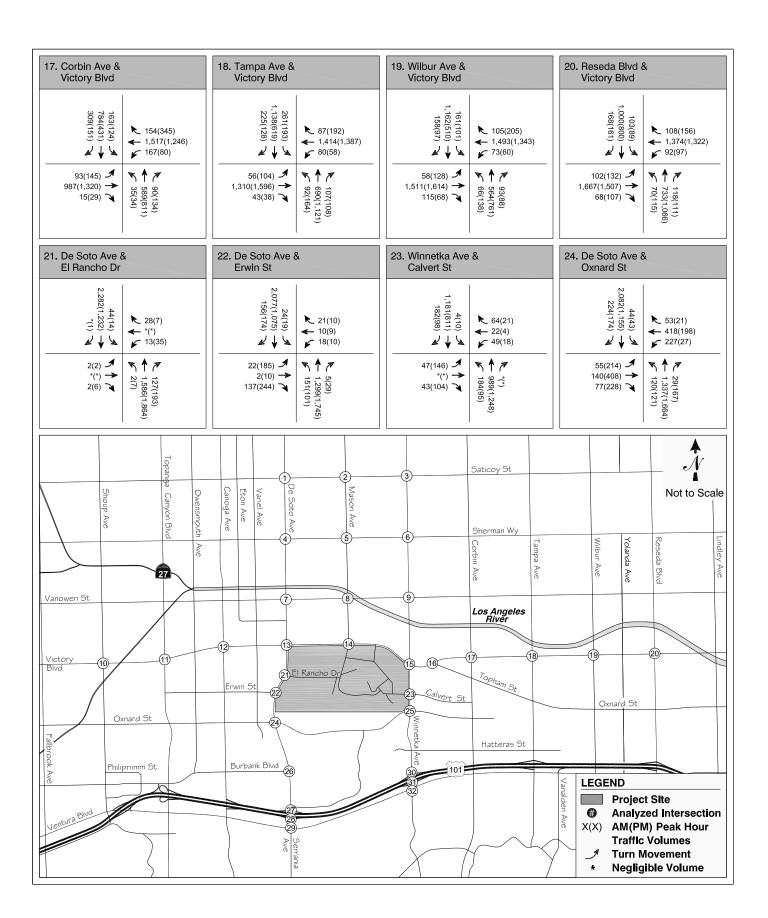

Weekday AM and PM peak period intersection turning movement counts were conducted at the 32 study intersections in 2007 or 2009. To provide a conservative analysis, a growth factor of one percent per year was applied to counts taken in 2007 to reflect 2009 conditions. The existing weekday peak hour turning movement volumes at the analyzed intersections are shown on Figure 3 and the turning movement count sheets are provided in Appendix B.

Intersection Level of Service Standards and Methodology


Level of service (LOS) is a qualitative measure used to describe the condition of traffic flow, ranging from excellent conditions at LOS A to overloaded conditions at LOS F. Level of service definitions for signalized intersections are provided in Table 1.

The City of Los Angeles typically uses LOS D as a standard, meaning that LOS D or better is considered to represent satisfactory conditions, while LOS E or F is generally considered to be substandard. The Warner Center Specific Plan establishes LOS E as the minimum acceptable level of service within the Warner Center Specific Plan area (to the west of the Pierce College campus).

All of the study intersections are currently controlled by traffic signals. The City of Los Angeles Department of Transportation (LADOT) requires that the "Critical Movement Analysis" (CMA) method (Transportation Research Board, 1980) of intersection capacity analysis be used to determine the intersection volume to capacity (V/C) ratio and corresponding level of service for the given turning movements and intersection characteristics at signalized intersections. The



EXISTING (2008-2009)WEEKDAY PEAK HOUR TRAFFIC VOLUMES

EXISTING (2008-2009) WEEKDAY PEAK HOUR TRAFFIC VOLUMES

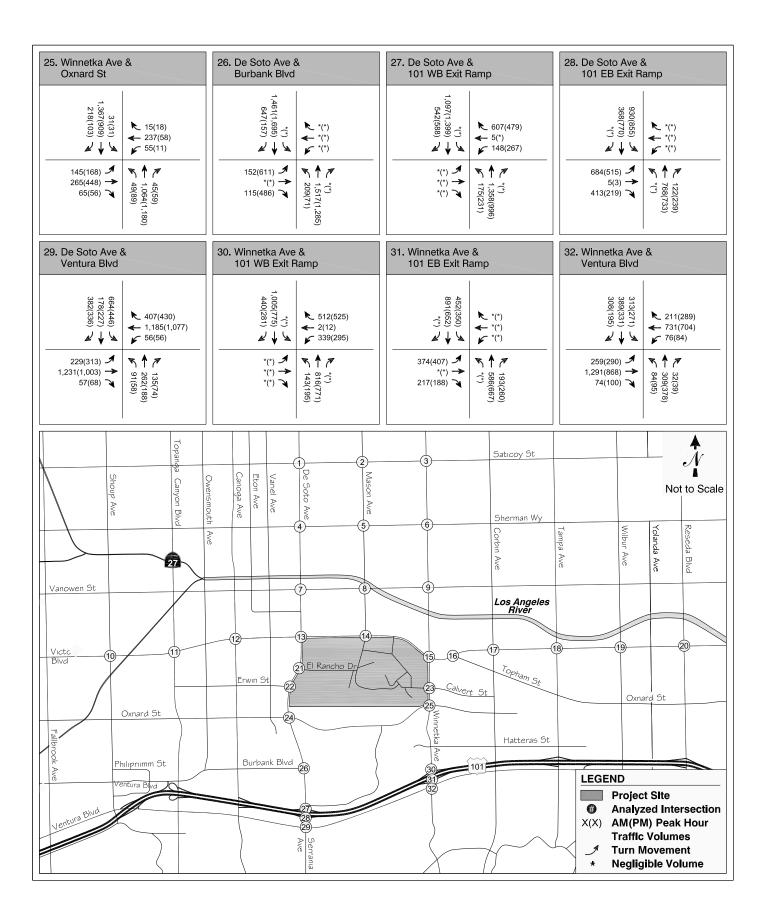


TABLE 1
LEVEL OF SERVICE DEFINITIONS FOR SIGNALIZED INTERSECTIONS

Level of Service	Intersection Capacity Utilization	Definition
А	0.000-0.600	EXCELLENT. No Vehicle waits longer than one red light and no approach phase is fully used.
В	0.601-0.700	VERY GOOD. An occasional approach phase is fully utilized; many drivers begin to feel somewhat restricted within groups of vehicles.
С	0.701-0.800	GOOD. Occasionally drivers may have to wait through more than one red light; backups may develop behind turning vehicles.
D	0.801-0.900	FAIR. Delays may be substantial during portions of the rush hours, but enough lower volume periods occur to permit clearing of developing lines, preventing excessive backups.
E	0.901-1.000	POOR. Represents the most vehicles intersection approaches can accommodate; may be long lines of waiting vehicles through several signal cycles.
F	> 1.000	FAILURE. Backups from nearby locations or on cross streets may restrict or prevent movement of vehicles out of the intersection approaches. Tremendous delays with continuously increasing queue lengths.

Source: Transportation Research Circular No. 212, Interim Materials on Highway Capacity, Transportation Research Board, 1980.

CALCADB software package developed by LADOT was used to implement the CMA methodology in this study.

All of the study intersections are currently controlled by the City of Los Angeles' Automated Traffic Surveillance and Control (ATSAC) system. In accordance with LADOT procedures, a capacity increase of 7% (0.07 V/C adjustment) was applied to reflect the benefits of ATSAC control at these intersections. Twenty-seven study intersections (all study intersections except for the three along Saticoy Street and the intersections of Vanowen Street with Mason Avenue and Winnetka Avenue) are currently controlled by the City of Los Angeles' Adaptive Traffic Control System (ATCS) system. In accordance with LADOT procedures, an additional capacity increase of 3% (0.03 V/C adjustment) was applied to reflect the benefits of ATCS control at these 27 intersections. Thus, a capacity increase of 7% was applied to five study intersections and a net capacity increase of 10% was applied at 27 study intersections.

Existing Peak Hour Intersection Levels of Service

The existing weekday AM and PM peak hour turning movements shown in Figure 3 were used in conjunction with the level of service methodology described above to determine existing operating conditions at each of the study intersections. Level of service calculation worksheets are included in Appendix C.

Table 2 summarizes the existing AM and PM peak hour V/C ratios and corresponding levels of service at each of the study intersections. As can be seen, 11 of the 32 intersections currently operate at LOS E or F during one or both of the AM and PM peak hours. These intersections are:

- De Soto Avenue & Saticoy Street
- De Soto Avenue & Sherman Way
- De Soto Avenue & Vanowen Street
- Topanga Canyon Boulevard & Victory Boulevard
- De Soto Avenue & Victory Boulevard
- Winnetka Avenue & Victory Boulevard
- Corbin Avenue & Victory Boulevard
- Tampa Avenue & Victory Boulevard
- Wilbur Avenue & Victory Boulevard
- Reseda Avenue & Victory Boulevard
- Winnetka Avenue & Ventura Boulevard

TABLE 2 EXISTING (YEAR 2008-2009) INTERSECTION LEVELS OF SERVICE

Intersection		AM Peak Hour PM Peak Hour					
*2. Mason Av & Saticoy St *3. Winnetka Av & Saticoy St *4. De Soto Av & Sherman Way **5. Mason Av & Sherman Way **5. Mason Av & Sherman Way **6. Winnetka Av & Sherman Way **7. De Soto Av & Sherman Way **8. Mason Av & Vanowen St *8. Mason Av & Vanowen St *9. Winnetka Av & Vanowen St *10. Shoup Av & Victory Blvd **11. Topanga Canyon Blvd & Victory Blvd **12. Canoga Av & Victory Blvd **13. De Soto Av & Victory Blvd **14. Mason Av & Victory Blvd **15. Winnetka Av & Victory Blvd **16. Topham St & Victory Blvd **17. Corbin Av & Victory Blvd **18. Tampa Av & Victory Blvd **19. Wilbur Av & Victory Blvd **19. Wilbur Av & Victory Blvd **19. Wilbur Av & Victory Blvd **10. Shoup Av & Victory Blvd **11. Topanga Canyon Blvd **12. Canoga Av & Victory Blvd **13. De Soto Av & Victory Blvd **14. Mason Av & Victory Blvd **16. Topham St & Victory Blvd **17. Corbin Av & Victory Blvd **19. Wilbur Av & Victory Blvd **22. De Soto Av & Erwin St **23. Winnetka Av & Calvert St **24. De Soto Av & Burbank Blvd West **25. Winnetka Av & Oxnard St **26. De Soto Av & Unit Blamps **27. De Soto Av & Ventura Blvd **28. De Soto Av & Ventura Blvd **29. De Soto Av & Ventura Blvd **30. Winnetka Av & I-101 WB Ramps **31. Winnetka Av & I-101 EB Ramps **32. Winnetka Av & I-101 EB Ramps **33. Winnetka Av & I-101 EB Ramps **34. De Goto Av & Unit I EB Ramps **35. De Goto Av & Unit I EB Ramps **36. De Goto Av & Unit I EB Ramps **36. De Goto Av & Unit I EB Ramps **37. De Goto Av & Unit I EB Ramps **38. De Goto Av & Unit I EB Ramps **39. De Goto Av & Unit I EB Ramps **30. Winnetka Av & I-101 EB Ramps **31. Winnetka Av & I-101 EB Ramps **30. Goto Av & Unit I EB Ramps **31. Winnetka Av & I-101 EB Ramps **322. De Goto Av & Unit I EB Ramps **34. De Goto Av & Unit I EB Ramps **35. De Goto Av & Unit I EB Ramps **36. De Goto Av & Unit I EB Ramps **30. Winnetka Av & I-101 EB Ramps **30. Goto Av & Unit I EB Ramps **	Intersection						
**3. Winnetka Av & Saticoy St **4. De Soto Av & Sherman Way **5. Mason Av & Sherman Way **6. Winnetka Av & Sherman Way **7. De Soto Av & Vanowen St **8. Mason Av & Vanowen St **9. Winnetka Av & Vanowen St **10. Shoup Av & Victory Blvd **11. Topanga Canyon Blvd & Victory Blvd **13. De Soto Av & Victory Blvd **14. Mason Av & Victory Blvd **15. Winnetka Av & Victory Blvd **16. Winnetka Av & Victory Blvd **11. Topanga Canyon Blvd & Victory Blvd **11. Topanga Canyon Blvd & Victory Blvd **12. Canoga Av & Victory Blvd **13. De Soto Av & Victory Blvd **16. Topham St & Victory Blvd **16. Topham St & Victory Blvd **16. Topham St & Victory Blvd **17. Corbin Av & Victory Blvd **19. Wilbur Av & Victory Blvd **19. Wilbur Av & Victory Blvd **20. Reseda Blvd & Victory Blvd **21. De Soto Av & El Rancho Dr **22. De Soto Av & Erwin St **22. De Soto Av & Calvert St **23. Winnetka Av & Calvert St **24. De Soto Av & Burbank Blvd West **25. Winnetka Av & Oxnard St **26. De Soto Av & Ventura Blvd **27. De Soto Av & Ventura Blvd **28. De Soto Av & Ventura Blvd **29. De Soto Av & Ventura Blvd **30. Winnetka Av & Ventura Blvd **31. Winnetka Av & Ventura Blvd **32. Winnetka Av & Ventura Blvd **33. Winnetka Av & Ventura Blvd **34. De Soto Av & Ventura Blvd **35. Winnetka Av & Ventura Blvd **36. De Soto Av & Ventura Blvd **37. De Soto Av & Ventura Blvd **38. De Soto Av & Ventura Blvd **39. De Soto Av & Ventura Blvd **30. Winnetka Av & Ventura Blvd **31. Winnetka Av & Ventura Blvd **32. De Soto Av & Ventura Blvd **33. Winnetka Av & Ventura Blvd **34. De Soto Av & Ventura Blvd **35. Winnetka Av & Ventura Blvd **36. De Soto Av & Ventura Blvd **37. De Soto Av & Ventura Blvd **38. De Soto Av & Ventura Blvd **39. De Soto Av & Ventura Blvd **30. Winnetka Av & V	*1. De Soto Av & Saticoy St	0.870	D	0.905	E		
**4. De Soto Av & Sherman Way **5. Mason Av & Sherman Way **6. Winnetka Av & Sherman Way **6. Winnetka Av & Sherman Way **7. De Soto Av & Vanowen St **8. Mason Av & Vanowen St **9. Winnetka Av & Vanowen St **10. Shoup Av & Victory Blvd **11. Topanga Canyon Blvd & Victory Blvd **13. De Soto Av & Victory Blvd **14. Mason Av & Victory Blvd **15. Winnetka Av & Victory Blvd **16. Topham St & Victory Blvd **16. Topham St & Victory Blvd **17. Corbin Av & Victory Blvd **18. Tampa Av & Victory Blvd **19. Wilbur Av & Victory Blvd **19. Wilbur Av & Victory Blvd **10. Shoup Av & Victory Blvd **11. Topanga Canyon Blvd & Victory Blvd **12. Canoga Av & Victory Blvd **13. De Soto Av & Victory Blvd **16. Topham St & Victory Blvd **17. Corbin Av & Victory Blvd **19. Wilbur Av & Victory Blvd **19. Wilbur Av & Victory Blvd **20. Reseda Blvd & Victory Blvd **20. Reseda Blvd & Victory Blvd **21. De Soto Av & El Rancho Dr **22. De Soto Av & Erwin St **23. Winnetka Av & Calvert St **24. De Soto Av & Burbank Blvd West **25. Winnetka Av & Oxnard St **26. De Soto Av & Burbank Blvd West **27. De Soto Av & Ventura Blvd **28. De Soto Av & Ventura Blvd **29. De Soto Av & Ventura Blvd **30. Winnetka Av & Ventura Blvd **31. Winnetka Av & Ventura Blvd **32. Winnetka Av & Ventura Blvd **33. Winnetka Av & Ventura Blvd **34. De Soto Av & Ventura Blvd **35. Winnetka Av & Ventura Blvd **36. De Soto Av & Ventura Blvd **37. De Soto Av & Ventura Blvd **38. De Soto Av & Ventura Blvd **39. De Soto Av & Ventura Blvd **30. Winnetka Av & Ventura Blvd **31. Winnetka Av & Ventura Blvd **322. De Soto Av & Ventura Blvd **333. Winnetka Av & Ventu	*2. Mason Av & Saticoy St	0.834	D	0.789	С		
***5. Mason Av & Sherman Way **6. Winnetka Av & Sherman Way **6. Winnetka Av & Sherman Way **7. De Soto Av & Vanowen St *8. Mason Av & Vanowen St *9. Winnetka Av & Vanowen St *10. Shoup Av & Victory Blvd **11. Topanga Canyon Blvd & Victory Blvd **12. Canoga Av & Victory Blvd **13. De Soto Av & Victory Blvd **14. Mason Av & Victory Blvd **15. Winnetka Av & Victory Blvd **16. Topham St & Victory Blvd **17. Corbin Av & Victory Blvd **18. Tampa Av & Victory Blvd **19. Wilbur Av & Victory Blvd **10. Shoup Av & Victory Blvd **14. Mason Av & Victory Blvd **15. Winnetka Av & Victory Blvd **16. Topham St & Victory Blvd **17. Corbin Av & Victory Blvd **19. Wilbur Av & Victory Blvd **20. Reseda Blvd & Victory Blvd **21. De Soto Av & El Rancho Dr **22. De Soto Av & Erwin St **22. De Soto Av & Coxnard St **23. Winnetka Av & Calvert St **24. De Soto Av & Burbank Blvd West **25. Winnetka Av & Calvert St **26. De Soto Av & Burbank Blvd West **27. De Soto Av & Burbank Blvd West **28. De Soto Av & Ventura Blvd **29. De Soto Av & Ventura Blvd **29. De Soto Av & Ventura Blvd **29. De Soto Av & Ventura Blvd **30. Winnetka Av & Ventura Blvd **31. Winnetka Av & Ventura Blvd **32. Winnetka Av & Ventura Blvd **33. Winnetka Av & Ventura Blvd **34. De Soto Av & Ventura Blvd **35. Winnetka Av & Ventura Blvd **36. De Soto Av & Ventura Blvd **37. Winnetka Av & Ventura Blvd **38. De Soto Av & Ventura Blvd **39. De Soto Av & Ventura Blvd **30. Winnetka Av & Ventura Blvd **31. Winnetka Av & Ventura Blvd **32. De Soto Av & Ventura Blvd **33. Winnetka Av & Ventura Blvd **34. De Soto Av & Ventura Blvd **35. Winnetka Av & Ventura Blvd **36. De Soto Av & Ventura Blvd **37. De Soto Av & Ventura Blvd **38. De Soto Av & Ventura Blvd	*3. Winnetka Av & Saticoy St	0.775	С	0.823	D		
**6. Winnetka Av & Sherman Way **7. De Soto Av & Vanowen St *8. Mason Av & Vanowen St *9. Winnetka Av & Vanowen St *10. Shoup Av & Victory Blvd **11. Topanga Canyon Blvd & Victory Blvd **12. Canoga Av & Victory Blvd **13. De Soto Av & Victory Blvd **16. Topham St & Victory Blvd **16. Topham St & Victory Blvd **17. Corbin Av & Victory Blvd **18. Tampa Av & Victory Blvd **19. Wilbur Av & Victory Blvd **10. Shoup Av & Victory Blvd **11. Topanga Canyon Blvd & Victory Blvd **12. Canoga Av & Victory Blvd **13. De Soto Av & Victory Blvd **14. Mason Av & Victory Blvd **15. Winnetka Av & Victory Blvd **16. Topham St & Victory Blvd **17. Corbin Av & Victory Blvd **19. Wilbur Av & Victory Blvd **19. Wilbur Av & Victory Blvd **19. Wilbur Av & Victory Blvd **20. Reseda Blvd & Victory Blvd **21. De Soto Av & El Rancho Dr **22. De Soto Av & Erwin St **22. De Soto Av & Calvert St **23. Winnetka Av & Oxnard St **24. De Soto Av & Oxnard St **25. Winnetka Av & Oxnard St **26. De Soto Av & Burbank Blvd West **27. De Soto Av & Burbank Blvd West **28. De Soto Av & Ventura Blvd **29. De Soto Av & Ventura Blvd **30. Winnetka Av & L-101 WB Ramps **28. De Soto Av & Ventura Blvd **30. Winnetka Av & L-101 WB Ramps **31. Winnetka Av & L-101 WB Ramps **32. Winnetka Av & L-101 WB Ramps **33. Winnetka Av & L-101 WB Ramps **34. Winnetka Av & L-101 WB Ramps **35. Winnetka Av & L-101 WB Ramps **36. De Soto Av & Ventura Blvd **37. Winnetka Av & L-101 WB Ramps **38. Winnetka Av & L-101 WB Ramps **39. De Soto Av & Ventura Blvd **30. Winnetka Av & L-101 WB Ramps **30. Winnetka Av & L-101 WB Ramps **31. Winnetka Av & L-101 WB Ramps **322. De Soto Av & L-101 WB Ramps **333. Winnetka Av & L-101 WB Ramps **34. De Soto Av & L-101 WB Ramps **35. Winnetka Av & L-101 WB Ramps **36. Be \$0.666 B	**4. De Soto Av & Sherman Way	0.735	С	0.958	E		
**7. De Soto Av & Vanowen St *8. Mason Av & Vanowen St *9. Winnetka Av & Vanowen St *10. Shoup Av & Victory Blvd **11. Topanga Canyon Blvd & Victory Blvd **12. Canoga Av & Victory Blvd **13. De Soto Av & Victory Blvd **14. Mason Av & Victory Blvd **15. Winnetka Av & Victory Blvd **16. Topham St & Victory Blvd **17. Corbin Av & Victory Blvd **18. Tampa Av & Victory Blvd **19. Wilbur Av & Victory Blvd **19. Wilbur Av & Victory Blvd **20. Reseda Blvd & Victory Blvd **21. De Soto Av & Erwin St **22. De Soto Av & Calvert St **23. Winnetka Av & Calvert St **24. De Soto Av & Oxnard St **25. Winnetka Av & Oxnard St **26. De Soto Av & Burbank Blvd West **27. De Soto Av & Ventura Blvd **28. De Soto Av & Ventura Blvd **30. Winnetka Av & Ventura Blvd **31. Winnetka Av & Ventura Blvd **32. Winnetka Av & Ventura Blvd **33. Winnetka Av & Ventura Blvd **34. De Soto Av & Ventura Blvd **35. Winnetka Av & Ventura Blvd **36. De Soto Av & Ventura Blvd **37. Winnetka Av & Ventura Blvd **38. De Soto Av & Ventura Blvd **39. De Soto Av & Ventura Blvd **30. Winnetka Av & Ventura Blvd **30. Blocked **30. Blocked **30. Blocked **30. Blocked **30. Blocked **30. Blocke	**5. Mason Av & Sherman Way	0.710	С	0.627	В		
*8. Mason Av & Vanowen St *9. Winnetka Av & Vanowen St 10. Shoup Av & Victory Blvd *11. Topanga Canyon Blvd & Victory Blvd *12. Canoga Av & Victory Blvd *13. De Soto Av & Victory Blvd *16. Topham St & Victory Blvd *17. Corbin Av & Victory Blvd *18. Tampa Av & Victory Blvd *19. Wilbur Av & Victory Blvd *10. Shoup Av & Victory Blvd *10. Shoup Av & Victory Blvd *11. Topanga Canyon Blvd & Victory Blvd *12. Canoga Av & Victory Blvd *13. De Soto Av & Victory Blvd *14. Mason Av & Victory Blvd *15. Winnetka Av & Victory Blvd *16. Topham St & Victory Blvd *17. Corbin Av & Victory Blvd *18. Tampa Av & Victory Blvd *19. Wilbur Av & Cictory Blvd *19. Wilbur Av & Cictory Blvd *19. Wilbur Av & Cictory Blvd *19. Wilbur Av & Victory Blvd *19. Wilbur Av & Cictory Blvd *19. Wilbur Av & Victory Blvd *19. Wilbur Av & Cictory Blvd *19. O.429 *10. O.429 *10. O.429 *10. O.429 *11. De Soto Av & Erwin St *12. De Soto Av & Erwin St *12. De Soto Av & Colvert St *12. De Soto Av & Burbank Blvd West *12. De Soto Av & Burbank Blvd West *12. De Soto Av & Burbank Blvd West *12. De Soto Av & Uentura Blvd *12. De Soto Av & Ventura Blvd *12. De Soto Av & Ventura Blvd *13. Winnetka Av & I-101 EB Ramps *14. De Soto Av & Ventura Blvd *15. Winnetka Av & I-101 EB Ramps *16. Do Soto Av & Uentura Blvd *17. De Soto Av & Uentura Blvd *18. De Soto Av & Ventura Blvd *19. De Soto Av & Uentura Blvd *19.	**6. Winnetka Av & Sherman Way	0.810	D	0.814	D		
*9. Winnetka Av & Vanowen St *10. Shoup Av & Victory Blvd *11. Topanga Canyon Blvd & Victory Blvd *12. Canoga Av & Victory Blvd *13. De Soto Av & Victory Blvd *14. Mason Av & Victory Blvd *15. Winnetka Av & Victory Blvd *16. Topham St & Victory Blvd *17. Corbin Av & Victory Blvd *18. Tampa Av & Victory Blvd *19. Wilbur Av & Victory Blvd *10. 930 *11. Topham St & Victory Blvd *12. Canoga Av & Victory Blvd *15. Winnetka Av & Victory Blvd *16. Topham St & Victory Blvd *17. Corbin Av & Victory Blvd *18. Tampa Av & Victory Blvd *19. Wilbur Av & Victory Blvd *19. O.975 *10. O.852 *11. De Soto Av & El Rancho Dr *12. De Soto Av & El Rancho Dr *12. De Soto Av & Erwin St *12. De Soto Av & Calvert St *12. De Soto Av & Calvert St *12. De Soto Av & Oxnard St *12. De Soto Av & Oxnard St *12. De Soto Av & Oxnard St *12. De Soto Av & Burbank Blvd West *12. De Soto Av & Burbank Blvd West *12. De Soto Av & Burbank Blvd West *12. De Soto Av & I-101 WB Ramps *12. De Soto Av & Ventura Blvd *13. Winnetka Av & I-101 EB Ramps *14. Uinnetka Av & I-101 EB Ramps *15. Uinnetka Av & I-101 EB Ramps *16. De Soto Av & I-101 EB Ramps *17. De Soto Av & Ventura Blvd *18. De Soto Av & Ventura Blvd *19. De Soto Av & Ventura Blvd *10. De Soto Av & Dendrica Dendrica Dendrica Dendrica Dendrica De	**7. De Soto Av & Vanowen St	0.815	D	0.936	E		
**10. Shoup Av & Victory Blvd **11. Topanga Canyon Blvd & Victory Blvd **11. Topanga Canyon Blvd & Victory Blvd **12. Canoga Av & Victory Blvd **13. De Soto Av & Victory Blvd **14. Mason Av & Victory Blvd **15. Winnetka Av & Victory Blvd **16. Topham St & Victory Blvd **17. Corbin Av & Victory Blvd **18. Tampa Av & Victory Blvd **19. Wilbur Av & Victory Blvd **20. Reseda Blvd & Victory Blvd **21. De Soto Av & El Rancho Dr **22. De Soto Av & El Rancho St **23. Winnetka Av & Calvert St **24. De Soto Av & Burbank Blvd West **25. Winnetka Av & Oxnard St **26. De Soto Av & Burbank Blvd West **27. De Soto Av & I-101 EB Ramps **30. Winnetka Av & Ventura Blvd **31. Winnetka Av & I-101 EB Ramps **31. Winnetka Av & I-101 EB Ramps 0.685 B 0.666 B 0.866 D 0.874 D 0.990 B 0.970 C 0.685 D 0.970 C 0.662 D 0.970 C 0.662 D 0.970 C 0.662 B 0.666 D 0.874 D 0.990 C 0.583 A 0.504 B 0.666 B 0.666	*8. Mason Av & Vanowen St	0.805	D	0.681	В		
***11. Topanga Canyon Blvd & Victory Blvd ***12. Canoga Av & Victory Blvd ***13. De Soto Av & Victory Blvd ***14. Mason Av & Victory Blvd ***15. Winnetka Av & Victory Blvd ***16. Topham St & Victory Blvd ***17. Corbin Av & Victory Blvd ***18. Tampa Av & Victory Blvd ***19. Wilbur Av & Victory Blvd ***20. Reseda Blvd & Victory Blvd ***21. De Soto Av & El Rancho Dr ***22. De Soto Av & El Rancho St ***23. Winnetka Av & Calvert St ***24. De Soto Av & Burbank Blvd West ***25. Winnetka Av & Oxnard St ***26. De Soto Av & Burbank Blvd West ***27. De Soto Av & I-101 WB Ramps ***28. De Soto Av & Ventura Blvd ***30. Winnetka Av & Ventura Blvd ***30. Winnetka Av & I-101 WB Ramps ***31. Winnetka Av & I-101 WB Ramps 0.685 B 0.666 B 0.907 B 0.904 F 0.904 P 0.904 P 0.905 P 0.925 E 0.925 E 0.925 E 0.925 E 0.852 D 0.970 E 0.925 D 0.970 E 0.970 E 0.970 E 0.970 E 0.970 E 0.925 B 0.970 E 0.925 B 0.970 E 0.9852 D 0.970 E 0.925	*9. Winnetka Av & Vanowen St	0.874	D	0.875	D		
**12. Canoga Av & Victory Blvd **13. De Soto Av & Victory Blvd **14. Mason Av & Victory Blvd **15. Winnetka Av & Victory Blvd **16. Topham St & Victory Blvd **17. Corbin Av & Victory Blvd **18. Tampa Av & Victory Blvd **19. Wilbur Av & Victory Blvd **20. Reseda Blvd & Victory Blvd **22. De Soto Av & Erwin St **23. Winnetka Av & Calvert St **24. De Soto Av & Burbank Blvd West **25. Winnetka Av & Oxnard St **26. De Soto Av & Burbank Blvd West **27. De Soto Av & I-101 WB Ramps **29. De Soto Av & Ventura Blvd **30. Winnetka Av & Ventura Blvd **31. Winnetka Av & Victory Blvd 0.685 D 0.666 D 0.666 D 0.6619 0.665 C 0.6619 C 0.662 D 0.970 E 0.925 E 0.852 D 0.970 E 0.925 E 0.852 D 0.852 D 0.970 E 0.925 E 0.852 D 0.970 E 0.925 F 0.852 D 0.852 D 0.970 E 0.925 F 0.852 D 0.852 D 0.852 D 0.970 E 0.925 F 0.852 D 0	**10. Shoup Av & Victory Blvd	0.865	D	0.874	D		
**13. De Soto Av & Victory Blvd **14. Mason Av & Victory Blvd 0.652 C 0.619 C **15. Winnetka Av & Victory Blvd 0.982 E 0.912 E **16. Topham St & Victory Blvd 0.816 D 0.659 B 0.925 E 0.925 E **17. Corbin Av & Victory Blvd 0.907 E 0.925 E **18. Tampa Av & Victory Blvd 0.930 E 1.056 F **19. Wilbur Av & Victory Blvd 0.975 E 0.852 D **20. Reseda Blvd & Victory Blvd 0.949 E 0.970 E **21. De Soto Av & El Rancho Dr 1.0545 A 0.430 A **22. De Soto Av & Erwin St 1.0545 A 0.430 A 0.545 D 0.662 B 0.664 B 0.664 B 0.664 B 0.664 B 0.664 B 0.664 B 0.666 B 0.666 B 0.666 B 0.666	**11. Topanga Canyon Blvd & Victory Blvd	0.679	В	0.910	E		
**14. Mason Av & Victory Blvd **15. Winnetka Av & Victory Blvd **16. Topham St & Victory Blvd **17. Corbin Av & Victory Blvd **18. Tampa Av & Victory Blvd **19. Wilbur Av & Victory Blvd **20. Reseda Blvd & Victory Blvd **21. De Soto Av & El Rancho Dr **22. De Soto Av & Erwin St **23. Winnetka Av & Calvert St **24. De Soto Av & Oxnard St **25. Winnetka Av & Cxnard St **26. De Soto Av & Burbank Blvd West **27. De Soto Av & I-101 WB Ramps **28. De Soto Av & Ventura Blvd **30. Winnetka Av & I-101 WB Ramps **31. Winnetka Av & Av & I-101 EB Ramps **31. Winnetka Av & Av & I-101 EB Ramps 0.685 B 0.666 D 0.619 C 0.625 B 0.970 E 0.925 F 0.852 D 0.970 E 0.925 A 0.394 A 0.394 A 0.394 A 0.394 A 0.394 A 0.430 A 0.430 A 0.430 A 0.543 A 0.583 A 0.583 A 0.583 A 0.583 A 0.583 A 0.583 A 0.594 A 0.594 A 0.594 B 0.666 B 0.666	**12. Canoga Av & Victory Blvd	0.607	В	0.861	D		
**15. Winnetka Av & Victory Blvd **16. Topham St & Victory Blvd **17. Corbin Av & Victory Blvd **18. Tampa Av & Victory Blvd **19. Wilbur Av & Victory Blvd **20. Reseda Blvd & Victory Blvd **21. De Soto Av & El Rancho Dr **22. De Soto Av & Erwin St **23. Winnetka Av & Calvert St **24. De Soto Av & Burbank Blvd West **25. Winnetka Av & Oxnard St **26. De Soto Av & I-101 WB Ramps **27. De Soto Av & I-101 EB Ramps **28. De Soto Av & Ventura Blvd **30. Winnetka Av & Victory Blvd 0.949 E 0.970 E 0.852 D 0.852 D 0.970 E 0.9	**13. De Soto Av & Victory Blvd	0.736	D	0.904	F		
**16. Topham St & Victory Blvd **17. Corbin Av & Victory Blvd **18. Tampa Av & Victory Blvd **19. Wilbur Av & Victory Blvd **20. Reseda Blvd & Victory Blvd **21. De Soto Av & El Rancho Dr **22. De Soto Av & Erwin St **23. Winnetka Av & Calvert St **24. De Soto Av & Oxnard St **25. Winnetka Av & Oxnard St **26. De Soto Av & Burbank Blvd West **27. De Soto Av & I-101 WB Ramps **28. De Soto Av & Ventura Blvd **29. De Soto Av & Ventura Blvd **30. Winnetka Av & I-101 WB Ramps **31. Winnetka Av & I-101 EB Ramps 0.685 B 0.970 0.970 0.949 0.949 0.949 0.970 0.949 0.940 0.949 0.940 0.94	**14. Mason Av & Victory Blvd	0.652	С	0.619	С		
**17. Corbin Av & Victory Blvd **18. Tampa Av & Victory Blvd **19. Wilbur Av & Victory Blvd **20. Reseda Blvd & Victory Blvd **21. De Soto Av & El Rancho Dr **22. De Soto Av & Erwin St **23. Winnetka Av & Calvert St **24. De Soto Av & Oxnard St **25. Winnetka Av & Oxnard St **26. De Soto Av & Burbank Blvd West **27. De Soto Av & I-101 WB Ramps **28. De Soto Av & Ventura Blvd **29. De Soto Av & Ventura Blvd **30. Winnetka Av & I-101 WB Ramps **31. Winnetka Av & I-101 EB Ramps **31. Winnetka Av & I-101 EB Ramps **31. Winnetka Av & I-101 EB Ramps 0.685 **30. Winnetka Av & I-101 EB Ramps 0.685 B 1.056 F 0.925 E 0.925 E 0.925 E 0.925 F 0.925 F 0.925 F 0.925 F 0.930 E 0.930 E 0.930 F 1.056 F 0.930 E 0.930 F 1.056 F 0.930 E 0.930 F 0.930 E 0.930 F 0.930 E 0.930 F 0.930 E 0.930 F 0.945 F 0.945 F 0.956 F 0.957 E 0.955 A 0.945 F 0.956 F 0.955 A 0.966 B **31. Winnetka Av & I-101 EB Ramps 0.685 B 0.666	**15. Winnetka Av & Victory Blvd	0.982	Е	0.912	E		
**18. Tampa Av & Victory Blvd **19. Wilbur Av & Victory Blvd **20. Reseda Blvd & Victory Blvd **21. De Soto Av & El Rancho Dr **22. De Soto Av & Erwin St **23. Winnetka Av & Calvert St **24. De Soto Av & Oxnard St **25. Winnetka Av & Oxnard St **26. De Soto Av & Burbank Blvd West **27. De Soto Av & I-101 WB Ramps **28. De Soto Av & Ventura Blvd **29. De Soto Av & Ventura Blvd **30. Winnetka Av & I-101 WB Ramps **31. Winnetka Av & I-101 EB Ramps **31. Winnetka Av & I-101 EB Ramps **31. Winnetka Av & I-101 EB Ramps 0.685 **30. Minnetka Av & I-101 EB Ramps 0.685 E 1.056 F 0.852 D 0.852 D 0.970 E 0	**16. Topham St & Victory Blvd	0.816	D	0.659	В		
**19. Wilbur Av & Victory Blvd **20. Reseda Blvd & Victory Blvd **21. De Soto Av & El Rancho Dr **22. De Soto Av & Erwin St **23. Winnetka Av & Calvert St **24. De Soto Av & Oxnard St **25. Winnetka Av & Oxnard St **26. De Soto Av & Burbank Blvd West **27. De Soto Av & I-101 WB Ramps **28. De Soto Av & Ventura Blvd **29. De Soto Av & Ventura Blvd **30. Winnetka Av & I-101 WB Ramps **31. Winnetka Av & I-101 EB Ramps **31. Winnetka Av & I-101 EB Ramps 0.685 D 0.970 E 0.852 D 0.970 E 0.9	**17. Corbin Av & Victory Blvd	0.907	E	0.925	E		
**20. Reseda Blvd & Victory Blvd 0.949 E 0.970 E **21. De Soto Av & El Rancho Dr 0.429 A 0.394 A **22. De Soto Av & Erwin St 0.612 B 0.451 A **23. Winnetka Av & Calvert St 0.545 A 0.430 A **24. De Soto Av & Oxnard St 0.737 C 0.625 B **25. Winnetka Av & Oxnard St 0.763 C 0.640 B **26. De Soto Av & Burbank Blvd West 0.564 A 0.583 A **27. De Soto Av & I-101 WB Ramps 0.618 B 0.649 B **28. De Soto Av & I-101 EB Ramps 0.729 C 0.583 A **29. De Soto Av & Ventura Blvd 0.764 C 0.662 B **30. Winnetka Av & I-101 WB Ramps 0.553 A 0.504 A **31. Winnetka Av & I-101 EB Ramps 0.685 B 0.666 B	**18. Tampa Av & Victory Blvd	0.930	E	1.056	F		
**21. De Soto Av & El Rancho Dr 0.429 A 0.394 A **22. De Soto Av & Erwin St 0.612 B 0.451 A **23. Winnetka Av & Calvert St 0.545 A 0.430 A **24. De Soto Av & Oxnard St 0.737 C 0.625 B **25. Winnetka Av & Oxnard St 0.763 C 0.640 B **26. De Soto Av & Burbank Blvd West 0.564 A 0.583 A **27. De Soto Av & I-101 WB Ramps 0.618 B 0.649 B **28. De Soto Av & I-101 EB Ramps 0.729 C 0.583 A **29. De Soto Av & Ventura Blvd 0.764 C 0.662 B **30. Winnetka Av & I-101 WB Ramps 0.553 A 0.504 A **31. Winnetka Av & I-101 EB Ramps 0.685 B 0.666 B	**19. Wilbur Av & Victory Blvd	0.975	E	0.852	D		
**22. De Soto Av & Erwin St 0.612 B 0.451 A **23. Winnetka Av & Calvert St 0.545 A 0.430 A **24. De Soto Av & Oxnard St 0.737 C 0.625 B **25. Winnetka Av & Oxnard St 0.763 C 0.640 B **26. De Soto Av & Burbank Blvd West 0.564 A 0.583 A **27. De Soto Av & I-101 WB Ramps 0.618 B 0.649 B **28. De Soto Av & I-101 EB Ramps 0.729 C 0.583 A **29. De Soto Av & Ventura Blvd 0.764 C 0.662 B **30. Winnetka Av & I-101 WB Ramps 0.553 A 0.504 A **31. Winnetka Av & I-101 EB Ramps 0.685 B 0.666 B	**20. Reseda Blvd & Victory Blvd	0.949	E	0.970	E		
**23. Winnetka Av & Calvert St 0.545 A 0.430 A **24. De Soto Av & Oxnard St 0.737 C 0.625 B **25. Winnetka Av & Oxnard St 0.763 C 0.640 B **26. De Soto Av & Burbank Blvd West 0.564 A 0.583 A **27. De Soto Av & I-101 WB Ramps 0.618 B 0.649 B **28. De Soto Av & I-101 EB Ramps 0.729 C 0.583 A **29. De Soto Av & Ventura Blvd 0.764 C 0.662 B **30. Winnetka Av & I-101 WB Ramps 0.553 A 0.504 A **31. Winnetka Av & I-101 EB Ramps 0.685 B 0.666 B	**21. De Soto Av & El Rancho Dr	0.429	Α	0.394	Α		
**24. De Soto Av & Oxnard St 0.737 C 0.625 B **25. Winnetka Av & Oxnard St 0.763 C 0.640 B **26. De Soto Av & Burbank Blvd West 0.564 A 0.583 A **27. De Soto Av & I-101 WB Ramps 0.618 B 0.649 B **28. De Soto Av & I-101 EB Ramps 0.729 C 0.583 A **29. De Soto Av & Ventura Blvd 0.764 C 0.662 B **30. Winnetka Av & I-101 WB Ramps 0.553 A 0.504 A **31. Winnetka Av & I-101 EB Ramps 0.685 B 0.666 B	**22. De Soto Av & Erwin St	0.612	В	0.451	Α		
**25. Winnetka Av & Oxnard St 0.763 C 0.640 B **26. De Soto Av & Burbank Blvd West 0.564 A 0.583 A **27. De Soto Av & I-101 WB Ramps 0.618 B 0.649 B **28. De Soto Av & I-101 EB Ramps 0.729 C 0.583 A **29. De Soto Av & Ventura Blvd 0.764 C 0.662 B **30. Winnetka Av & I-101 WB Ramps 0.553 A 0.504 A **31. Winnetka Av & I-101 EB Ramps 0.685 B 0.666 B	**23. Winnetka Av & Calvert St	0.545	Α	0.430	Α		
**26. De Soto Av & Burbank Blvd West 0.564 A 0.583 A **27. De Soto Av & I-101 WB Ramps 0.618 B 0.649 B **28. De Soto Av & I-101 EB Ramps 0.729 C 0.583 A **29. De Soto Av & Ventura Blvd 0.764 C 0.662 B **30. Winnetka Av & I-101 WB Ramps 0.553 A 0.504 A **31. Winnetka Av & I-101 EB Ramps 0.685 B 0.666 B	**24. De Soto Av & Oxnard St	0.737	С	0.625	В		
**27. De Soto Av & I-101 WB Ramps 0.618 B 0.649 B **28. De Soto Av & I-101 EB Ramps 0.729 C 0.583 A **29. De Soto Av & Ventura Blvd 0.764 C 0.662 B **30. Winnetka Av & I-101 WB Ramps 0.553 A 0.504 A **31. Winnetka Av & I-101 EB Ramps 0.685 B 0.666 B	**25. Winnetka Av & Oxnard St	0.763	С	0.640	В		
**28. De Soto Av & I-101 EB Ramps 0.729 C 0.583 A **29. De Soto Av & Ventura Blvd 0.764 C 0.662 B **30. Winnetka Av & I-101 WB Ramps 0.553 A 0.504 A **31. Winnetka Av & I-101 EB Ramps 0.685 B 0.666 B	**26. De Soto Av & Burbank Blvd West	0.564	Α	0.583	Α		
**29. De Soto Av & Ventura Blvd 0.764 C 0.662 B **30. Winnetka Av & I-101 WB Ramps 0.553 A 0.504 A **31. Winnetka Av & I-101 EB Ramps 0.685 B 0.666 B	**27. De Soto Av & I-101 WB Ramps	0.618	В	0.649	В		
**30. Winnetka Av & I-101 WB Ramps 0.553 A 0.504 A **31. Winnetka Av & I-101 EB Ramps 0.685 B 0.666 B	**28. De Soto Av & I-101 EB Ramps	0.729	С	0.583	Α		
**31. Winnetka Av & I-101 EB Ramps 0.685 B 0.666 B	**29. De Soto Av & Ventura Blvd	0.764	С	0.662	В		
	**30. Winnetka Av & I-101 WB Ramps	0.553	Α	0.504	Α		
**32. Winnetka Av & Ventura Blvd 0.885 D 0.911 E	**31. Winnetka Av & I-101 EB Ramps	0.685	В	0.666	В		
i i i i i i i i i i i i i i i i i i i	**32. Winnetka Av & Ventura Blvd	0.885	D	0.911	Е		

Notes:

 $^{^{\}star}$ Intersection is currently operating under ATSAC system.

^{* *}Intersection is currently operating under ATCS system.

The remaining study intersections operate at fair to good levels of service (LOS D or better) during both the AM and PM peak hours.

EXISTING PUBLIC TRANSIT SERVICE

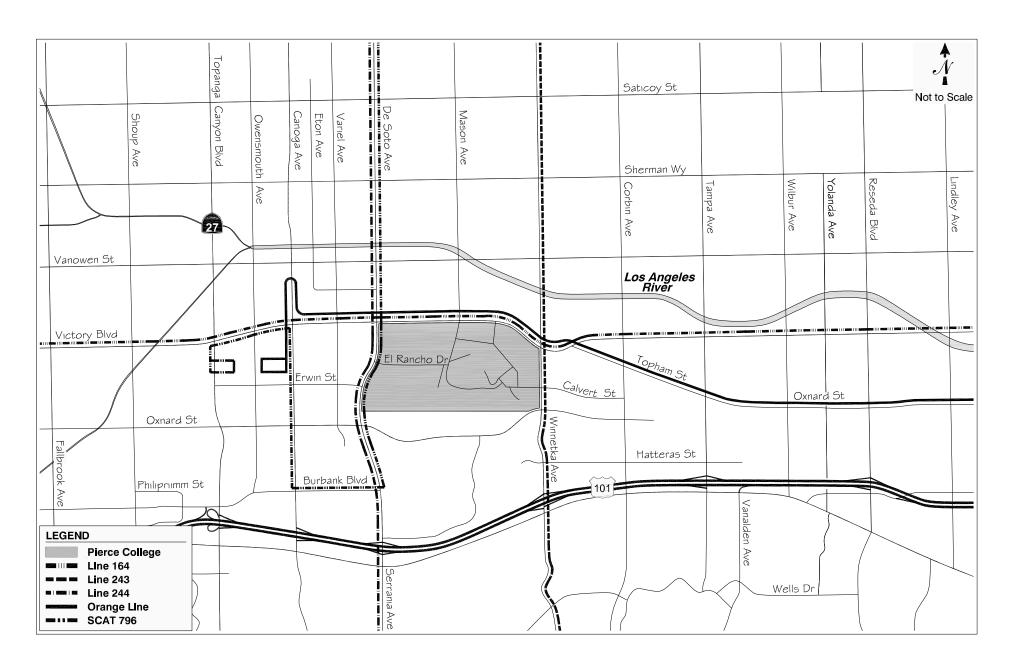
The Pierce College campus is currently served by bus service provided by the Los Angeles County Metropolitan Transit Authority (Metro) and the Santa Clarita Transit Authority (SCTA). Existing bus routes providing direct service along Victory Boulevard, Winnetka Avenue, and/or De Soto Avenue adjacent to the campus include:

- Metro Orange Line The Metro Orange Line is a bus rapid transit (BRT) line that operates on a dedicated east-west ROW between the North Hollywood Metro Red Line station and Canoga Park. The line then exits the dedicated ROW and operates on streets, looping through Warner Center to provide service at the Warner Center Transit Hub adjacent to the Promenade, approximately one-half mile from the project site, before re-entering the ROW in the opposite direction. The line operates with average headways¹ of four to five minutes during peak periods.
- Metro Line 164 Line 164 provides local service along Victory Boulevard between Valley Circle Boulevard, Woodland Hills, Warner Center, Reseda, Van Nuys, North Hollywood and Burbank. Service is provided seven days per week. In the vicinity of the Pierce College campus, Line 164 stops on Victory Boulevard east of Mason Avenue adjacent to Lot 7.
- Metro Line 242/243 Line 242/243 provides local service between Chatsworth, Canoga Park, Warner Center, Woodland Hills, Winnetka, and Northridge, along a "U" shaped route that includes both Tampa Avenue and Winnetka Avenue. Service is provided six days per week (Monday through Saturday). In the vicinity of Pierce College, Line 242/243 stops on Winnetka Avenue south of Victory Boulevard southbound, on Winnetka Avenue north of Victory Boulevard northbound, north of Brahma Drive/Calvert Street northbound, and south of Brahma Drive/Calvert Street southbound.
- Metro Line 244/245 Line 244/245 provides local service between Chatsworth, Canoga Park, Warner Center, and Woodland Hills along a "U" shaped route that includes both De Soto Avenue and Topanga Canyon Boulevard. Service is provided seven days per week. In the vicinity of Pierce College, Line 244/245 stops on De Soto Avenue south of Victory Boulevard southbound, north of El Rancho Drive northbound, and south of El Rancho Drive southbound.
- SCTA Commuter Route 796 This line provides limited stop service between Santa Clarita and Warner Center. Service is provided Monday through Friday only, with five runs traveling inbound from Santa Clarita to Warner Center in the morning peak period and five

Headways are the time between buses arriving at a particular bus stop. In this case, four minute headways means that a bus comes by each stop along this bus route once every four minutes.

runs traveling outbound from Warner Center to Santa Clarita in the evening peak period. Route 791/796 travels along De Soto Avenue in the vicinity of Pierce College.

The paths of the transit routes near Pierce College are shown in Figure 4.


PIERCE COLLEGE CAMPUS ACCESS AND INTERNAL CIRCULATION SYSTEM

Vehicular access to the Pierce College campus is provided at four locations:

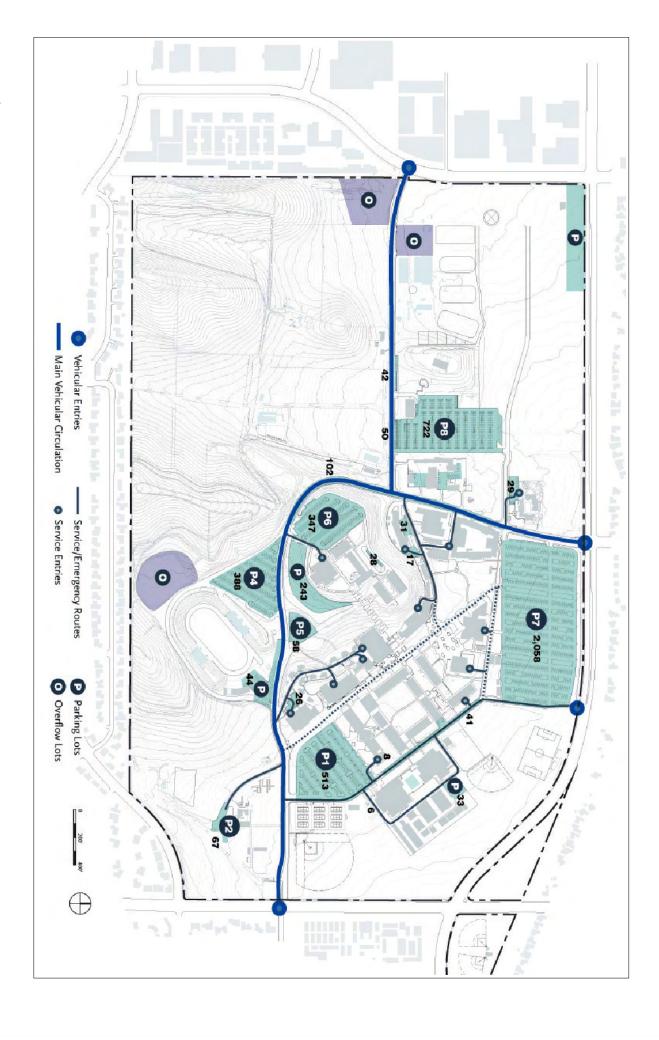
- <u>Brahma Drive</u> Brahma Drive is an internal street providing access from Winnetka Avenue on the east side of the campus. Brahma Drive intersects Winnetka Avenue opposite Calvert Street, and its intersection with Winnetka Avenue/Calvert Street is controlled by a traffic signal. On campus, Brahma Drive provides access to Lot 1 and connects to Stadium Way, which in turn ultimately connects to Mason Street.
- Mason Street Mason Street is an internal street providing access from Victory Boulevard on the north side of the campus. Mason Street intersects Victory Boulevard opposite Mason Avenue, and its intersection with Victory Boulevard is signalized. On campus, Mason Street provides access to Lot 7. It then intersects with Olympic Drive and El Rancho Drive and continues as Stadium Way, ultimately connecting with Brahma Drive.
- <u>El Rancho Drive</u> El Rancho Drive is an internal street providing access from a signalized intersection with De Soto Avenue on the west side of the campus. On campus, El Rancho Drive connects to Mason Street/Stadium Way.
- <u>Lot 7 Driveway</u> In addition to the three signalized access points described above, there is an unsignalized driveway from parking Lot 7 directly onto Victory Boulevard, east of Mason Avenue.

Additional internal streets providing circulation on the campus include:

- Olympic Drive Olympic Drive runs along the south side of Lot 7 and has a security gate
 at the east end of the lot. Beyond the security gate, it continues into the campus core,
 becoming part of the internal system with a second gate near the sheriff substation.
- <u>Stadium Way</u> Stadium Way is the primary through route around the south side of the campus core. It connects Brahma Drive with Mason Street and El Rancho Drive, and provides access to Shepard Stadium and several student parking lots.

EXISTING PIERCE COLLEGE PARKING CONDITIONS

Parking is a critical component of Piece College's transportation system since the majority of students, faculty, staff, and visitors access the campus by vehicle. This section discusses the existing campus parking supply and compares it to the existing demand for parking in order to assess the ability of the current parking supply to serve the campus community.


Existing Campus Parking Supply

This section describes the current inventory of parking on the Pierce College campus, including location, amount, and type of existing parking. This information was either provided by the college, gathered through field investigation, or both. Specifically, the field investigation involved counting the number and type of spaces at each campus lot and adjacent on-street parking locations in spring 2009.

Parking for the Pierce College community is provided in numerous surface parking lots and street parking on adjacent frontages of Victory Boulevard and Winnetka Avenue. The locations of these lots are illustrated in Figure 5. As summarized in Table 3, a total of approximately 3,719 parking spaces are available on the campus in seven major student lots and numerous smaller lots. This includes about 3,138 spaces in student or undesignated lots (including approximately 85 unmarked parking spaces in dirt parking areas) and 581 spaces in designated staff lots. The seven major student lots range in size from about 45 spaces in Lot 3 to 1,127 spaces in Lot 7 (the large lot adjacent to Victory Boulevard).

Access to the student lots is physically unrestricted, although students are required to purchase a pass to use these spaces. Access to the staff lots is typically controlled by security gates and is restricted to faculty, staff, and visitors with passes.

In addition to the on-campus parking supply, it is estimated that there are approximately 271 off-campus curbside unmarked parking spaces along Victory Boulevard and Winnetka Avenue immediately adjacent to the campus. This includes about 45 spaces on the west side of Winnetka Avenue between Victory Boulevard and Brahma Drive/Calvert Street, about 114 spaces on the south side of Victory Boulevard between Mason Avenue and Winnetka Avenue, and about 112 spaces on the south side of Victory Boulevard between De Soto Avenue and Mason Avenue.

LOCATIONS OF EXISTING PARKING FACILITIES SERVING PIERCE COLLEGE CAMPUS

TABLE 3 EXISTING PIERCE COLLEGE PARKING INVENTORY BY LOT

Map #	Location/ Description	Use	Туре	# of Parking Spaces	Inventory Notes
ON-C	CAMPUS PARKING				
		Staff & Student			
1	Parking Lot 1	Parking Staff & Student	Lot	448	33 student spaces, 5 faculty spaces,
2	Parking Lot 2 & Dirt Parking	Parking	Lot	58	and 20 estimated dirt spaces.
3	Parking Lot 3	Student Parking	Lot	45	
4	Parking Lot 4	Student Parking	Lot	411	
5	Parking Lot 5	Staff Parking	Lot	68	
	B 1: 1 10W 1	0	0 1 // 1	N1/A	This lot was closed at the time
6A	Parking Lot 6 West	Student Parking Staff & Student	Curb/Lot	N/A	parking counts were conducted. 21 Faculty spaces and 187 student
6B	Parking Lot 6 East	Parking	Dirt Lot	208	spaces.
	y	Staff & Student			
7	Parking Lot 7	Parking	Lot	1,286	
8	Parking Lot 8	Staff & Student Parking	Lot	695	14 faculty spaces and 681 student spaces
9	Parking Lot 9	Student Parking	Lot	150	
10	Curb Parking NS of El Rancho Drive South of Lot 8	Student Parking	Curb	71	30 unmarked spaces estimated at time of counts
11	ES of Mason Street South of Victory Boulevard	Student Parking	Curb	27	
	Staff Parking WS of Olympic Drive	0. " 0			
12	near North Gym Staff Parking Lot West of Olympic	Staff Parking	Curb	35	
13	Drive near Chemistry	Staff Parking	Lot	2	
	Staff Parking Lot West of Olympic			_	
14	Drive near Computer Science	Staff Parking	Lot	4	
15	Staff Parking East of North Gym	Staff Parking	Lot	45	
16	Staff Parking East of Pool	Staff Parking	Lot	6	
17	Staff Parking East of South Gym	Staff Parking	Lot	3	
18	Staff Parking South of Industrial Technology	Staff Parking	Lot	33	
19	Staff Parking near Anthropology	Staff Parking	Curb	6	
20	Curb Parking Stadium Way South of El Rancho Drive	Student Parking	Curb	79	
21	Curb Parking Stadium Way North of Lot 4	Student Parking	Curb	20	
22	Student Parking South of South Gym	Student Parking	Lot	15	
23	Curb Parking North of Lot 1	Staff Parking	Curb	4	
	ON-CAMPUS SUBTOTAL			3,719	
	Estimated Spaces in Unmarked Dir	85			

Estimated Spaces in Unmarked Dirt Lots On-Campus Subtotal not including Dirt Spaces

3,634

TABLE 3 EXISTING PIERCE COLLEGE PARKING INVENTORY BY LOT

				# of	
Мар	Location/		_	Parking	
#	Description	Use	Туре	Spaces	Inventory Notes

OFF-CAMPUS (ADJACENT STREET) PARKING

	Parking on South Side of Victory				Spaces unmarked, number
24	Blvd., De Soto to Mason	General Parking	Curb	112	estimated.
	Parking on South Side of Victory				Spaces unmarked, number
	Blvd., Mason to Winnetka	General Parking	Curb	114	estimated.
	Parking on West Side of Winnetka				Spaces unmarked, number
26	Ave., Victory to Calvert	General Parking	Curb	45	estimated.
	OFF-CAMPUS SUBTOTAL	271			

GRAND TOTAL ON- AND OFF-CAMPUS PARKING

TOTAL SPACES	3,990	

Note: Parking inventory conducted February 2002.

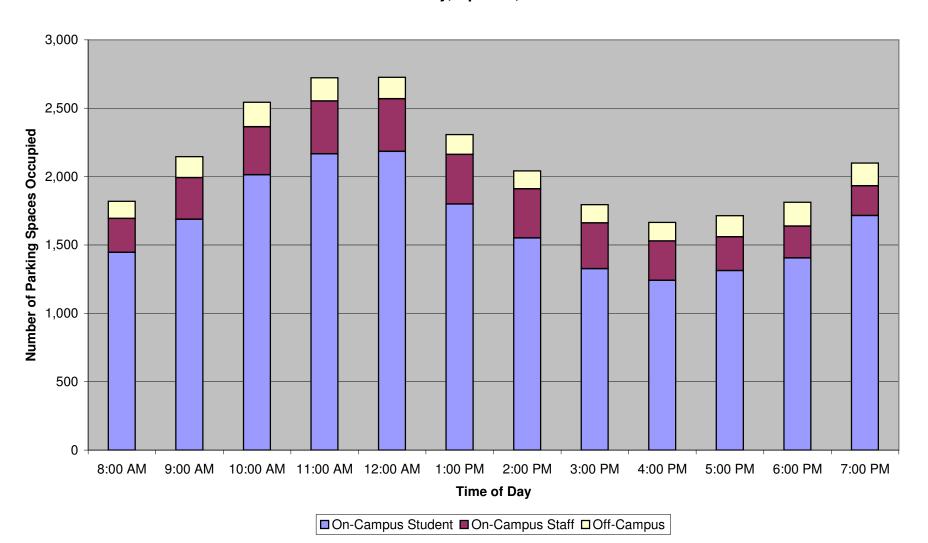
Existing Campus Parking Demand

A parking utilization survey was conducted as part of this study on Wednesday, April 29, 2009, to assess the utilization of the various parking facilities throughout a typical weekday with school in session. The survey was conducted during the twelfth week of classes in the Spring 2009 semester, after campus activity levels had stabilized. The survey was conducted hourly throughout the day from 8:00 AM to 7:00 PM in each of the on-campus parking facilities as well as the adjacent street parking.

Table 4 summarizes the results of the utilization survey. As can be seen, a maximum of 2,726 parking spaces were observed to be utilized at 12:00 PM, including 2,570 on-campus spaces and 156 off-campus/on-street spaces. Figure 6 illustrates the hourly variation of existing parking demand for the entire campus parking system.

The peak demand-to-supply ratio for the entire system is around 68% at 12:00 PM. The morning hours between 10:00 AM and 12:00 noon experience the highest demand levels, ranging from 64% to 68% of the spaces utilized. The 7:00 PM hour, with 53% of the spaces utilized, is the fifth highest demand hour of the day, due to relatively high attendance at evening classes.

Typically, demand/supply ratios of 85% to 90% are considered to indicate a fully-utilized parking supply. A parking area would be considered effectively full despite the 10% to 15% remaining capacity since the time to find an empty space would be excessive. Since utilization of the existing Pierce College parking system currently peaks at about 68%, there is presently a substantial amount of excess capacity in the system as a whole. Certain individual lots, however, have demand/supply ratios of greater than 90% at certain times of the day, including student Lots 1, 3, and 7 (see Appendix D for details of the utilization survey results by parking lot).


TABLE 4
SUMMARY OF EXISTING PIERCE COLLEGE PARKING INVENTORY AND UTILIZATION
Wednesday, April 29, 2009

	Inventory		Number and Percent of Parking Spaces Occupied by Time of Day										
	(# of Spaces)	8:00 AM	9:00 AM	10:00 AM	11:00 AM	12:00 PM	1:00 PM	2:00 PM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	7:00 PM
Number of Spa	ces Occupied												
On-Campus: Student Lots Staff Lots Subtotal	3,138 [a] <u>581</u> 3,719 [a]	1,446 <u>248</u> 1,694	1,688 <u>305</u> 1,993	2,014 <u>351</u> 2,365	2,167 <u>386</u> 2,553	2,185 <u>385</u> 2,570	1,799 <u>363</u> 2,162	1,552 <u>359</u> 1,911	1,327 <u>334</u> 1,661	1,241 <u>288</u> 1,529	1,313 <u>247</u> 1,560	1,405 <u>233</u> 1,638	1,715 <u>218</u> 1,933
Off-Campus	271 [b]	125	153	179	170	156	145	131	134	136	154	174	166
Total	3,990	1,819	2,146	2,544	2,723	2,726	2,307	2,042	1,795	1,665	1,714	1,812	2,099
Percent of Space	ces Occupied												
On-Campus: Student Lots Staff Lots Subtotal		46% 43% 46%	54% 52% 54%	64% 60% 64%	69% 66% 69%	70% 66% 69%	57% 62% 58%	49% 62% 51%	42% 57% 45%	40% 50% 41%	42% 43% 42%	45% 40% 44%	55% 38% 52%
Off-Campus		46%	56%	66%	63%	58%	54%	48%	49%	50%	57%	64%	61%
Total		46%	54%	64%	68%	68% *	58%	51%	45%	42%	43%	45%	53%

Notes:

- * Denotes peak demand.
- a. On-campus inventory includes approximately 65 unmarked parking spaces in dirt parking lots.
- b. Approximate number of on-street spaces immediately fronting campus along south side of Victory Boulevard and west side of Winnetka Avenue.

FIGURE 6
EXISTING PIERCE COLLEGE PARKING UTILIZATION BY TIME OF DAY
Wednesday, April 29, 2009

III. FUTURE TRAFFIC PROJECTIONS

In order to properly evaluate potential impacts of the proposed project on the street system, it was necessary to develop estimates of future traffic conditions in the study area both with and without the project. Future traffic volumes were first estimated for the study area without the project. These future forecasts reflect traffic increases due to general regional growth and traffic expected to be generated by other specific developments in the vicinity of the project and represent cumulative base (no project) conditions. Incremental project traffic was then estimated and separately assigned to the surrounding street system. The sum of the cumulative base and project-generated traffic represents the Cumulative plus Project conditions. Development of each of these future traffic scenarios is described in this chapter.

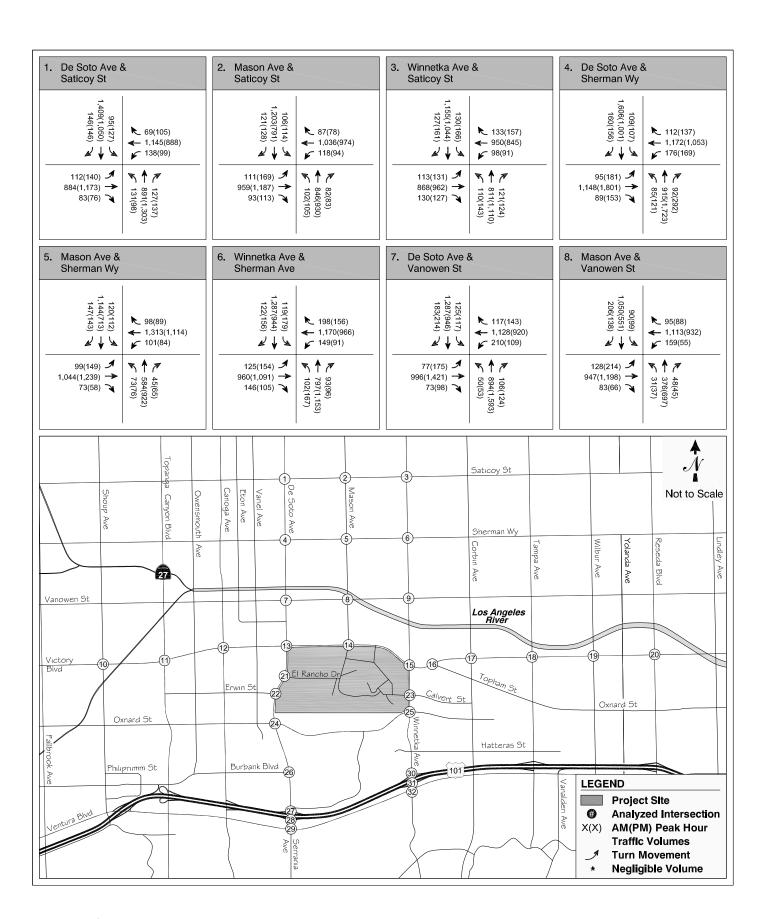
CUMULATIVE BASE TRAFFIC PROJECTIONS

The cumulative base traffic projections reflect growth in traffic over existing conditions from two primary sources, including growth in the existing traffic volumes to reflect the effects of overall regional growth and development outside of the study area and traffic generated by specific related projects within, or in the vicinity of, the study area. In addition, trips generated by population growth on the Pierce College campus between the 2002 base year and current Year 2009 conditions have been estimated and removed from the 2015 baseline. These factors are described below.

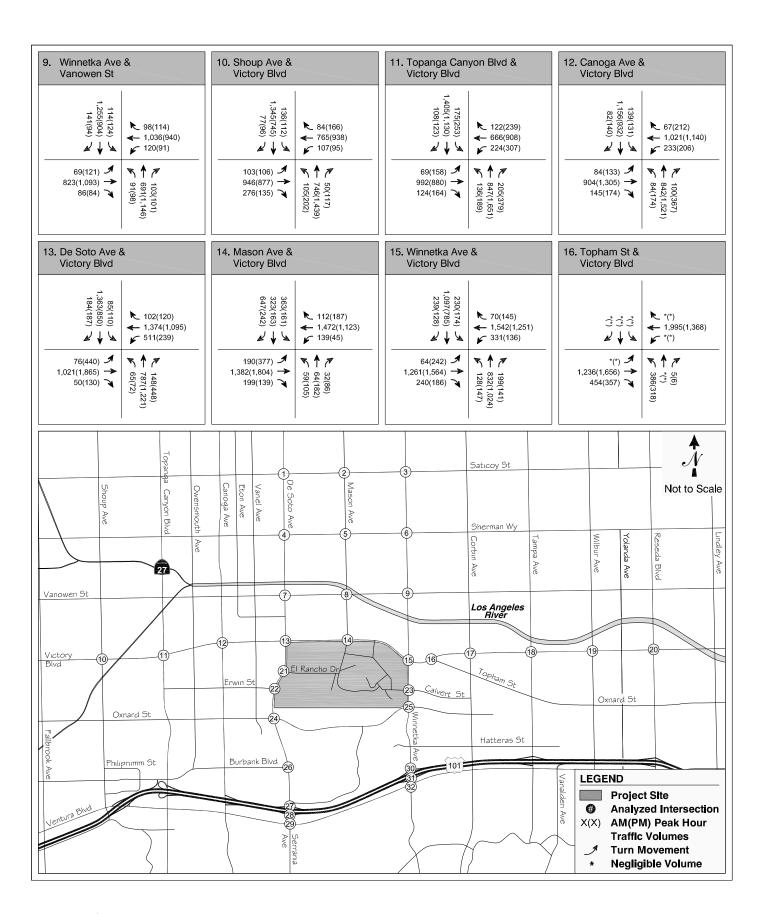
Areawide Traffic Growth

The background regional growth in traffic was estimated by adjusting the existing traffic volumes upwards using a growth factor. A factor of 1% per year was used in this analysis, based on general traffic volume growth factors suggested in *2004 Congestion Management Program for Los Angeles County* (Los Angeles County Metropolitan Transportation Authority, July 2004) for the San Fernando Valley. Using this growth rate, the existing (year 2009) traffic volumes were

adjusted upwards by 6% to reflect six years of regional growth from 2009 to 2015. The existing plus ambient growth weekday peak hour turning movement volumes at the analyzed intersections are shown in Figure 7.

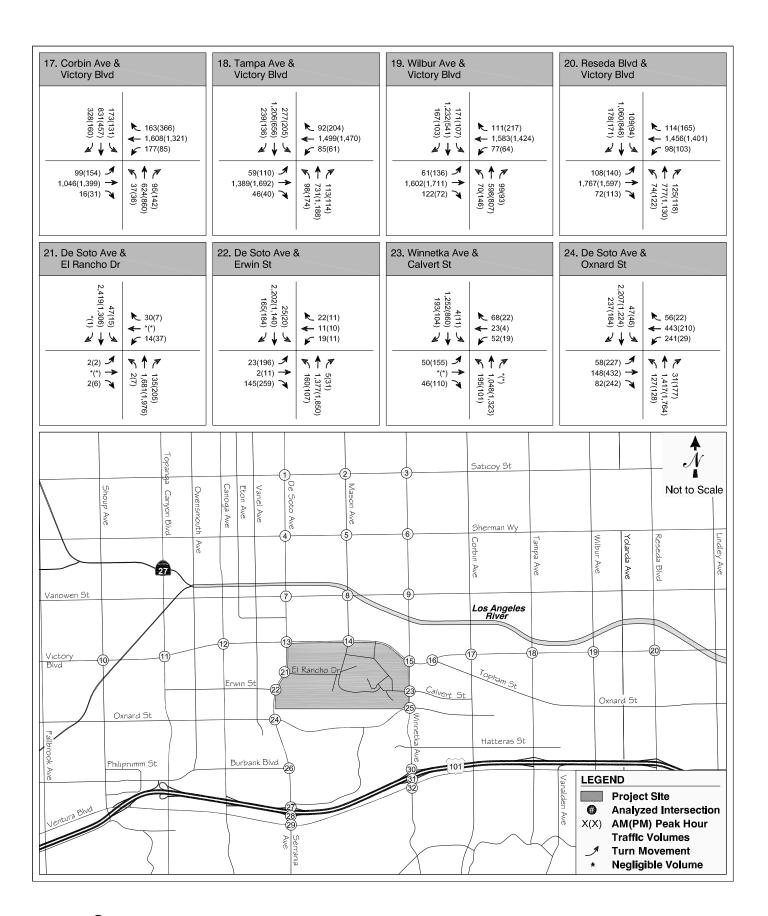

Cumulative Development Projects

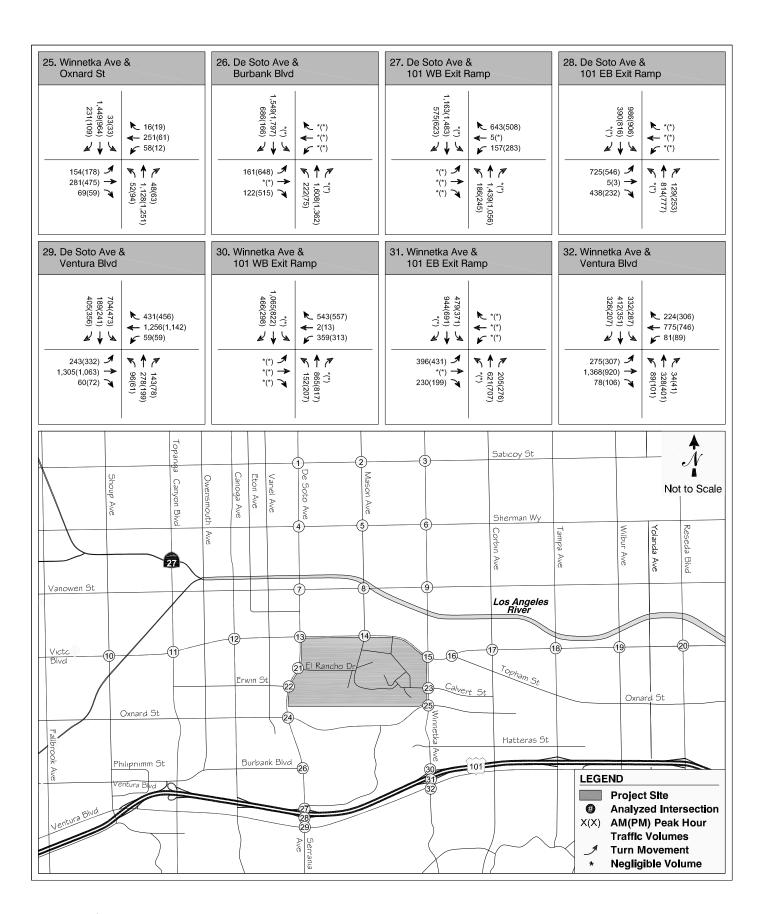
Traffic expected to be generated by specific development projects within, or with the potential to affect, the study was also considered. Information regarding future projects that are either under construction, planned, or proposed for development was obtained from the City of Los Angeles Department of Transportation (LADOT). A total of 32 related projects were identified for inclusion in the analysis. The locations of these projects are illustrated in Figure 8 and the estimated trip generation for each is listed in Table 5. Trip generation estimates for the related projects were provided by LADOT. The weekday peak hour turning movement volumes representing related project only volumes at the analyzed intersections are shown on Figure 9.


The geographic distribution of traffic generated by developments such as those included in the analysis is dependent on several factors. These factors include the type and density of the proposed land uses, the geographic distribution of the population from which employees and/or patrons of the proposed development are drawn, and the location of the project in relation to the surrounding street system. Trip distribution patterns for each related project were developed based on the above factors.

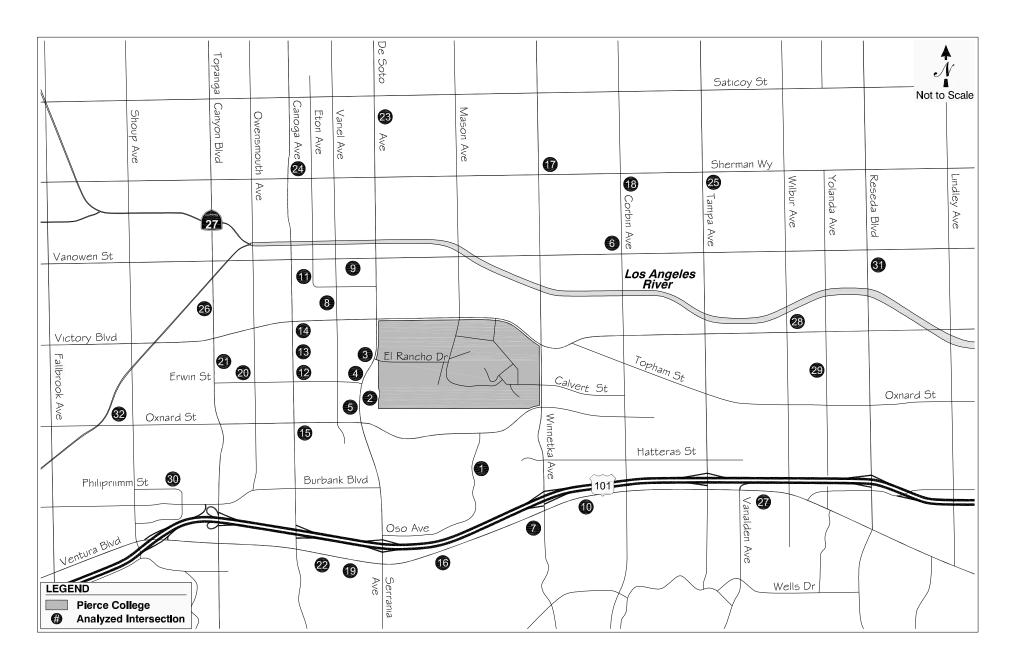
Pierce College Baseline Adjustment

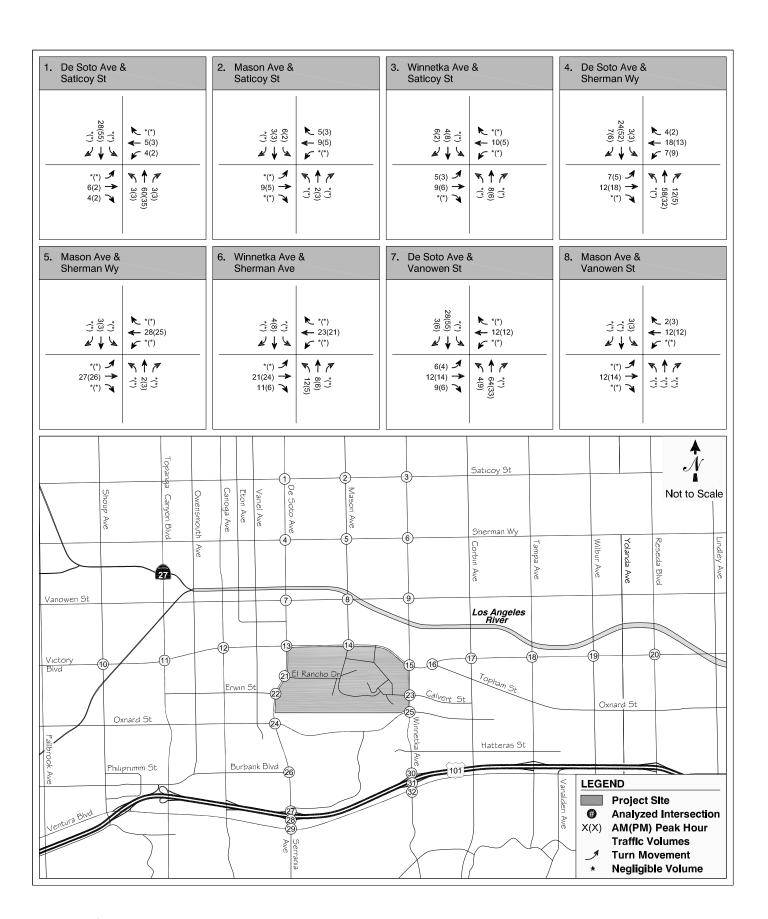
In 2002 an environmental review was conducted to analyze the potential environmental impacts of the proposed Pierce College Facilities Master Plan (*Traffic and Parking Study for the Pierce College Facilities Master Plan Environmental Impact Report*, Kaku Associates, 2002). The scheduled buildout year for that project was 2010. The Pierce College Master Plan evaluated in 2002 is being updated and analyzed in this document. To accurately analyze the entire project, this analysis is analyzing a 2015 cumulative base that replicates conditions based on 2002 FTE. In addition to ambient growth and related projects, the incremental project trips generated by the project based on changes in FTE between 2002 and 2009 have been removed from the street





EXISTING PLUS AMBIENT WEEKDAY PEAK HOUR TRAFFIC VOLUMES




EXISTING PLUS AMBIENT WEEKDAY PEAK HOUR TRAFFIC VOLUMES

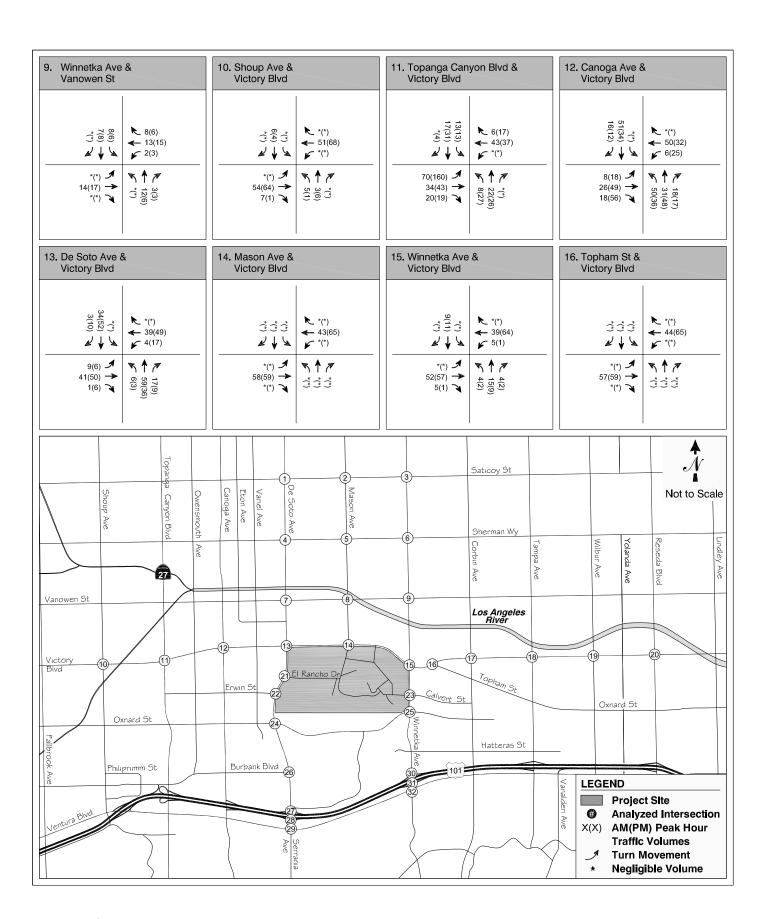
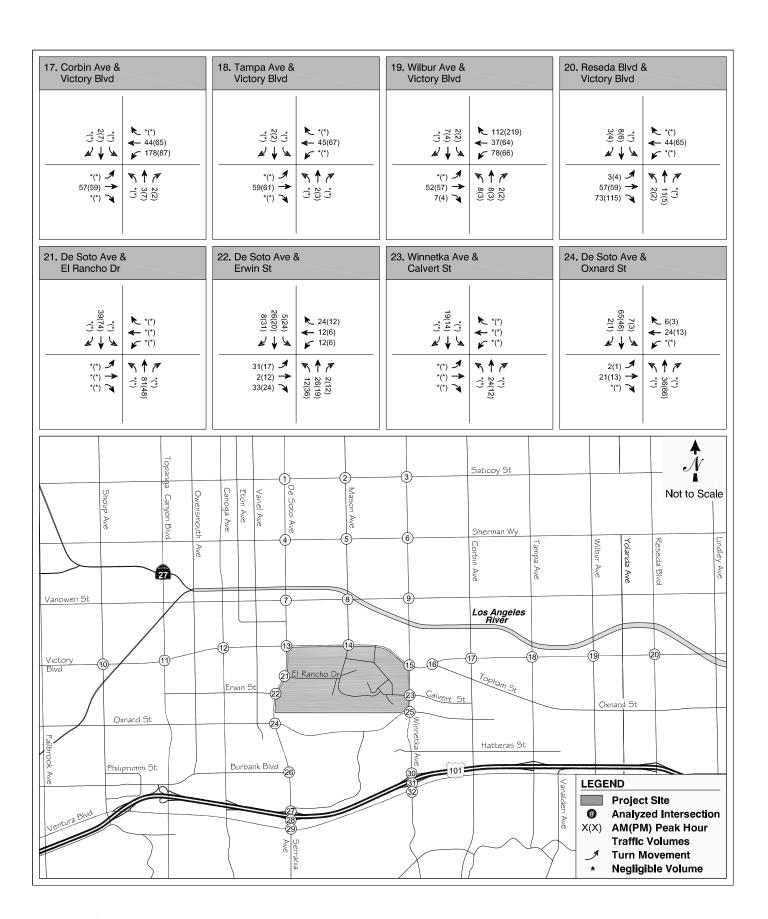
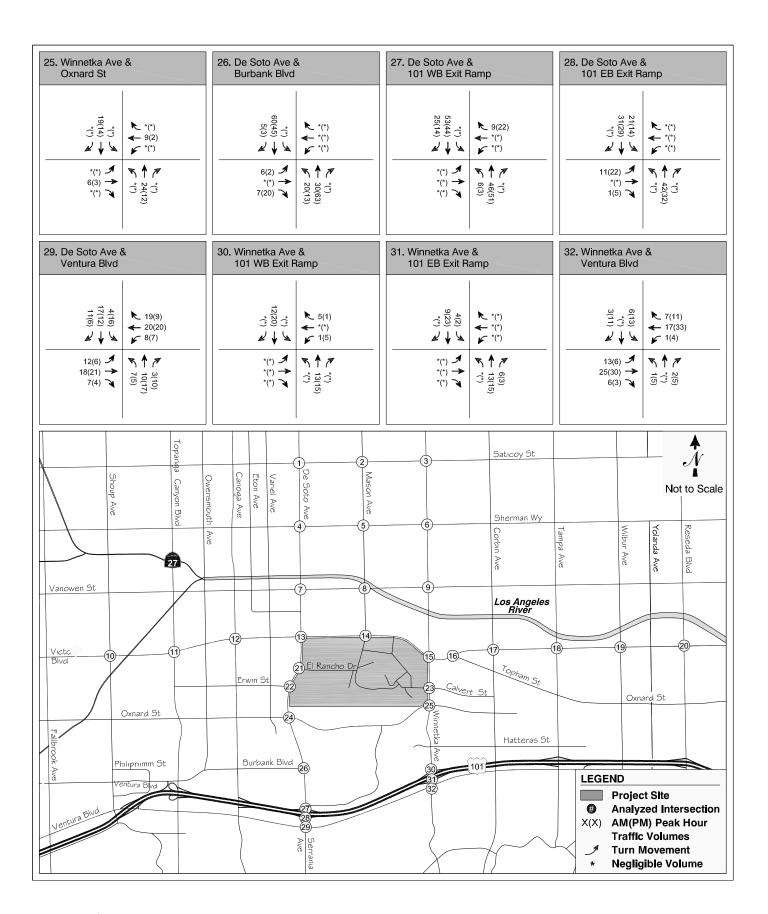
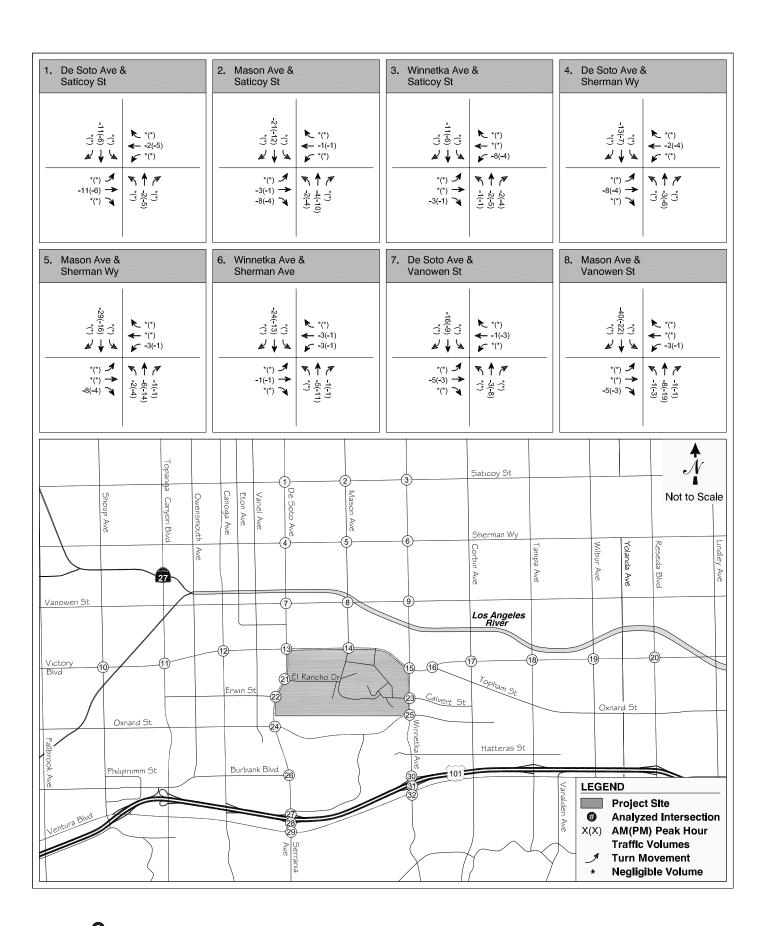


TABLE 5 TRIP GENERATION ESTIMATES FOR RELATED PROJECTS [a]

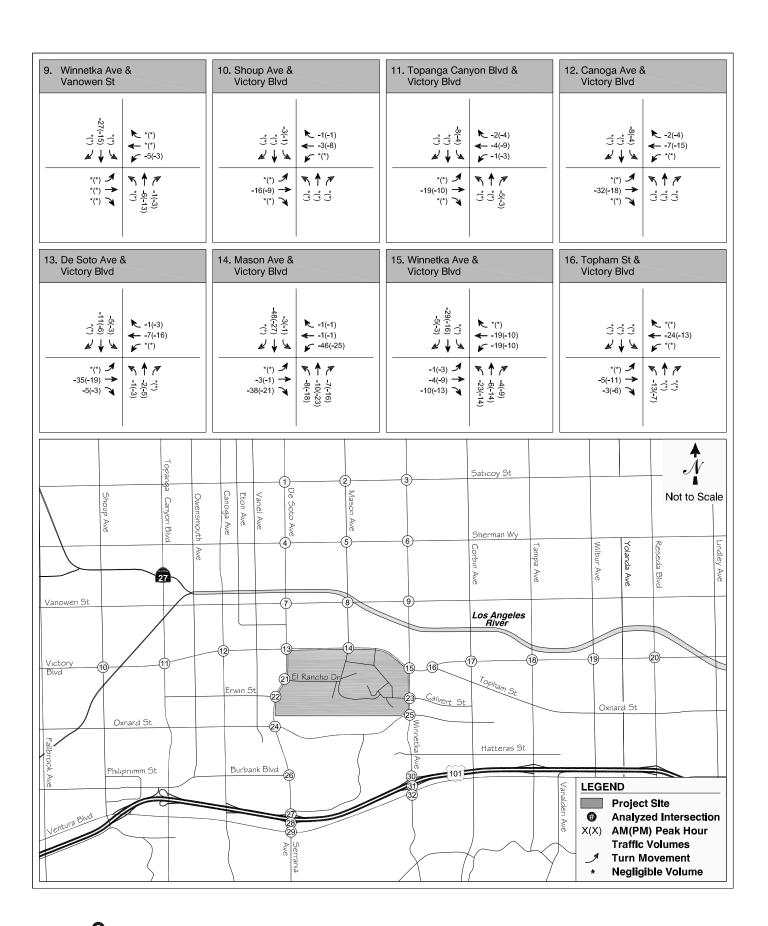

				AM Peak		PM Peak							
Index	Address	Project Title	DOT Case	In	Out	Total	In	Out	Total	Size	Unit	Comments	
1	5724 Oso Av	Oso High School	SFV-2003-84	104	88	192	26	30	56	400	Enrollment		
2	6000 De Soto Av	Bella Vista Phase 2	WC-1998-16	15	76	91	74	36	110	190	Dwelling Unit	Final part of Warner Ridge	
3	6355 De Soto Av	Trammell Crow Residential (TCR)	WC-04-043 ISPI	-22	105	83	102	9	111	306	Dwelling Unit	Trips as calc by consultant.	
4	6219 De Soto Av	REW Holdings LLC	WC-2003-22	90	358	448	354	191	545	879	Dwelling Unit	Panovision Apartments	
5	6051 De Soto Av	Ivy Academia Charter School	WC-2004-18	39	32	71	22	26	48	300	Enrollment	Trips based on elementary school since proposed grades 1-7. See also 2004-47.	
6	19701 Vanowen St	Vanowen & Corbin shopping center	Pending	70	49	119	74	76	150	28289	Sq. Footage	15789 pharmacy w/ dr thru, 8500 retail, 4000 fast food no dr thru replacing 9146 furniture store	
7	19900 Ventura Bl	Bank	VEN-2004-76	1	7	8	64	58	122	4849	Sq. Footage		
8	6625 Variel Av	Archstone Apartments	WC-2002-6	-102	65	-37	148	-49	99	522	Dwelling Unit	Bought out Ray Art's Studios for new 522- units Archstone Apts.	
9	21050 Vanowen St	Avalon Bay Canoga Park	WC-2004-23	-32	79	47	63	-54	9	210	Dwelling Unit	210 Apartments to replace 39ksf office bldg	
10	19750 Ventura Bl	Corbin Village Shopping Center	VEN-2003-17	36	23	59	95	87	182	55340	Sq. Footage	Proposed Supermarket to replace 99 cent store	
11	6700 Eton Av	Residential Project	WC 05-007ISPR	64	142	206	144	105	249	438	units	apartments	
12	6250 Canoga Av	The Plaza	WC-2003-8	66	234	300	243	139	382	601	Dwelling Unit	Apartment units + 10000 s.f. local retail	
13	6300 Canoga Av	Trillium health club expansion	WC-2003-5	7	9	16	27	26	53	13000	Sq. Footage	New addition to existing health club	
14	6464 Canoga Avenue	Office & retail	SFV-2006-98	152	21	173	24	117	141	16.177	ksf retail	Office & retail	
15	5960 Canoga Av	Coffee shop, dry cleaner, convenience store	WC-2003-6	141	135	276	93	94	187	2972	Sq. Footage	Add to existing gas station: 583sf coffee shop; 973sf dry cleaners; 3,444 sf conv-store	
16	20600 Ventura Bl	Chalk Hill Residential Project	VEN-2004-78	37	160	197	134	78	212		Mixed Use	340 Condominiums + 16000 sf retail replacing church	
17	20001 Sherman Way	Valley Region Elementary School #10	SFV-2005-257	202	182	384	82	100	182	650	Seats	P.M. trips based on ITE rates	
18	19640 Sherman Way	Panda Express	SFV-2007-169	1	2	3	18	17	35	2500	Sq. Footage	2000 s.f. Panda Express w/ drive thru and 500 s.f. additional retail	
19	20956 Ventura Bl	McDonalds	VEN-2003-21	47	46	93	32	29	61	3500	Sq. Footage	Fast food w/ drive-thru.	
20	21757 Erwin St	Financial Partners Credit Union	WC-2005-44	2	3	5	34	32	66	4,000	Sq. Footage	Proposed Credit Union in place of retail. See also WC-2004-32, WC-2005-20	
21	6360 Topanga Cyn Bl	The Village at Westfield Topanga	WC-2007-34	655	254	909	470	732	1202	1,125,440	Sq. Footage	Mixed Use Project	
22	21108 Ventura Bl	Wells Fargo Bank	VEN-2004-67	3	6	9	79	79	158	5593	Sq. Footage	Replacing specialty retail (wireless phone store)	
23	7510 De Soto Av	Multicultural Learning Center	SFV-2006-57	79	65	144	46	52	98	160	Seats	Expansion of charter school (K-8)	
24	21355 Sherman Way	McDonalds & Starbucks	SFV-2002-40	85	78	163	77	75	152	4400	Sq. Footage	fast-food w/ drive through	
25	7150 Tampa Av	Jewish Home for the Aging Expansion	SFV-2003-050	26	32	58	47	30	77		Other	nursing home w/ 162 net retirement apts, 150 net nursing beds, 24630 sf dining & kitchen	
26	6537 Topanga Canyon Bl	California National Bank	WC-2005-3	5		5	21	39	60	8331	Sq. Footage	Bank to replace 3 day blinds	
27	5530 Donna Av	Samiti Yog/Meditation Center	SFV-2005-059	41	39	80			0	240	Seats	seats = attendees	
28	18855 Victory Bl	Jewish Home for the Aging Expansion	SFV-2005-67	21	11	32	22	28	50	228	Beds	Assisted living facility	
29	6155 Yolanda Av	Crestview Private Elementary School	SFV-2003-014	181	205	386	97	79	176	420	Enrollment	18701 Calvert St	
30	22201 Philipriimm St.	44 new SFDs	N/A	8	25	33	28	16	44	44	Dwelling Unit	New single family dwellings	
31	6724 Reseda Bl	Reseda Auto Electric Center	SFV-2004-113	23	9	32	21	22	43	19	Bays	19 bay auto care center + 2200 sf office	
32	22555 Oxnard St	Woodland Hills Private School	SFV-2001-15	89	57	146	13	18	31	185	Students	185 net student increase for K-12 private school	



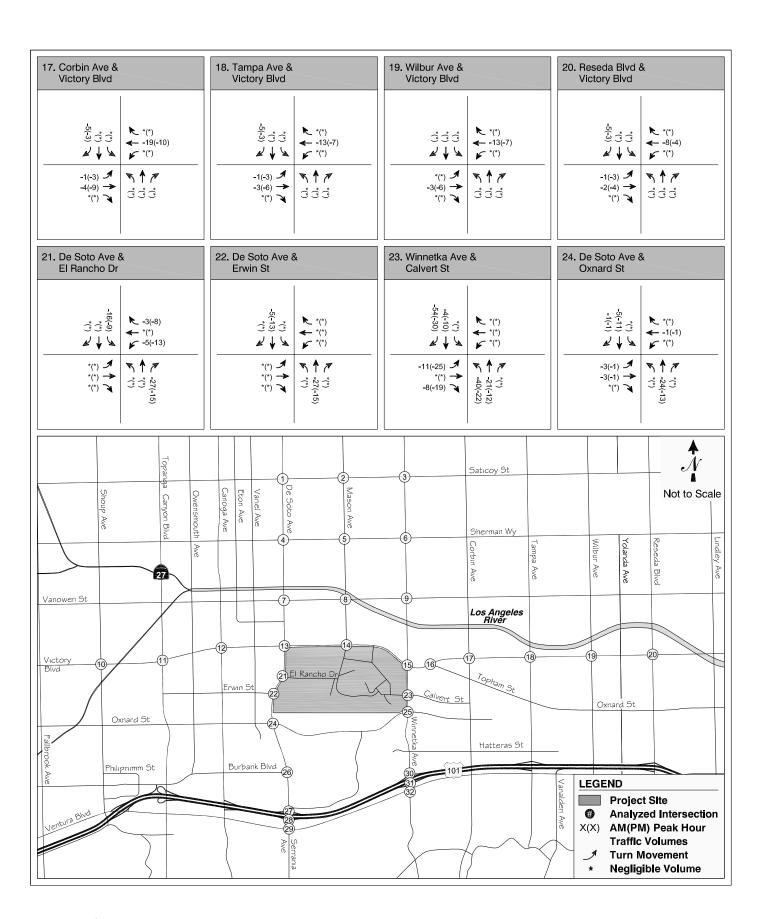
network for 2015 cumulative base conditions. To account for changes in campus population and fully analyze the impacts of the updated Master Plan, the 2015 cumulative plus project conditions analyze the incremental trip increases from 2002 to 2015 based on projected FTE. As such, the incremental project impact of campus growth between 2002 and 2015 has been isolated, allowing for analysis of the entire project as the growth projected from 2002 to 2015. The weekday peak hour turning movement volumes representing project trips generated by changes in FTE from 2002 to 2009 to be removed at the analyzed intersections are shown on Figure 10.

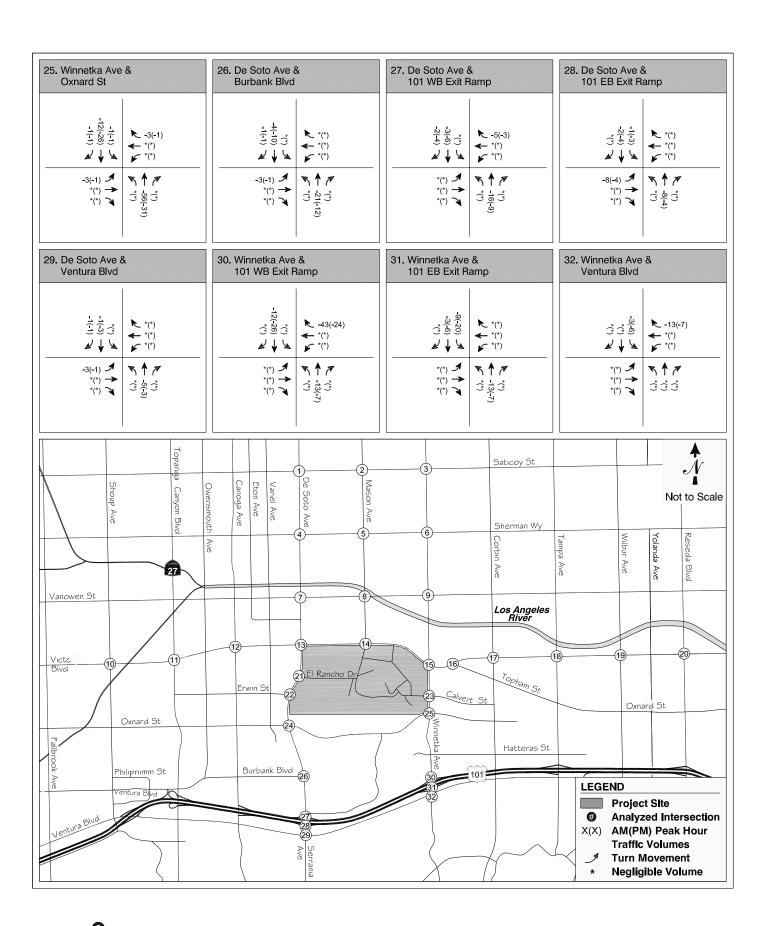

Table 6 provides the peak hour trip generation estimates for Pierce College based on the changes in FTE from 2002 to 2009 that were removed from the street network as shown in Figure 10. Approximately 3,210 daily trips are projected from the Pierce College year 2002 FTE baseline to year 2009 FTE, including about 323 trips during the AM peak hour and 274 trips during the PM peak hour. The derivation of trip generation rates and project trip distribution patterns used to remove the trips generated by changes in FTE from 2002 to 2009 are discussed in the section of this chapter following cumulative base traffic volumes.

Cumulative Base Traffic Volumes


Using the estimated trip generation and trip distribution patterns, traffic generated by the 32 related projects was assigned to the street network and added to the ambient background increase of six percent, while project generated trips based on the change in FTE from the 2002 Pierce College baseline to 2009 were removed. The resulting traffic volumes, representing 2015 cumulative base conditions without the project, are presented in Figure 11.

BASELINE TRANSPORTATION SYSTEM IMPROVEMENTS


Information was collected from LADOT regarding committed transportation system improvements programmed for implementation within the study area and timeframe. These include:



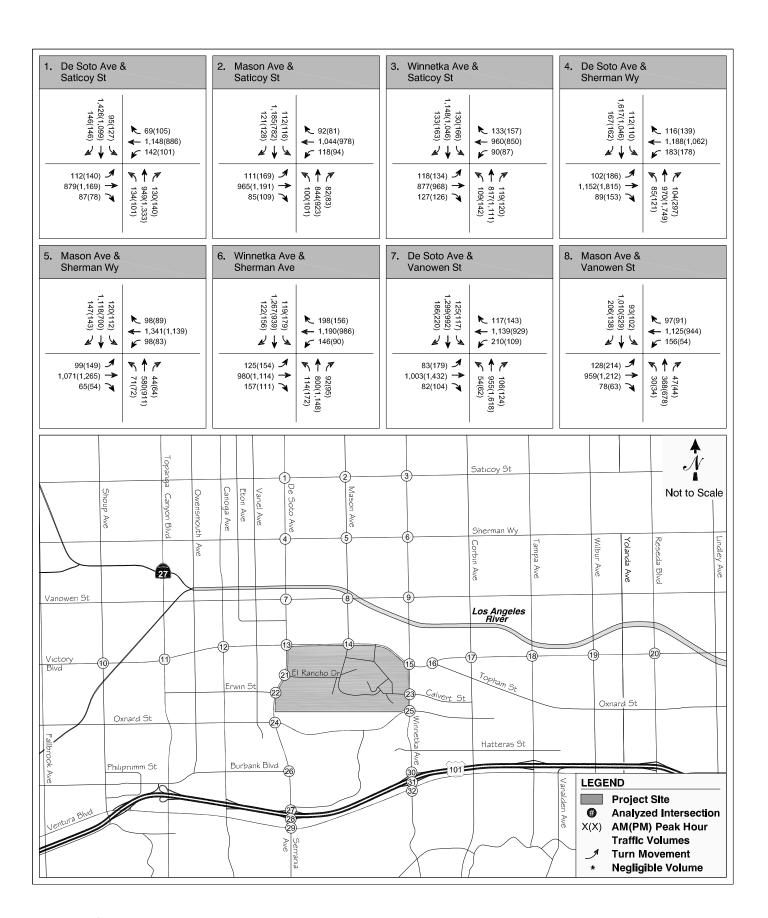
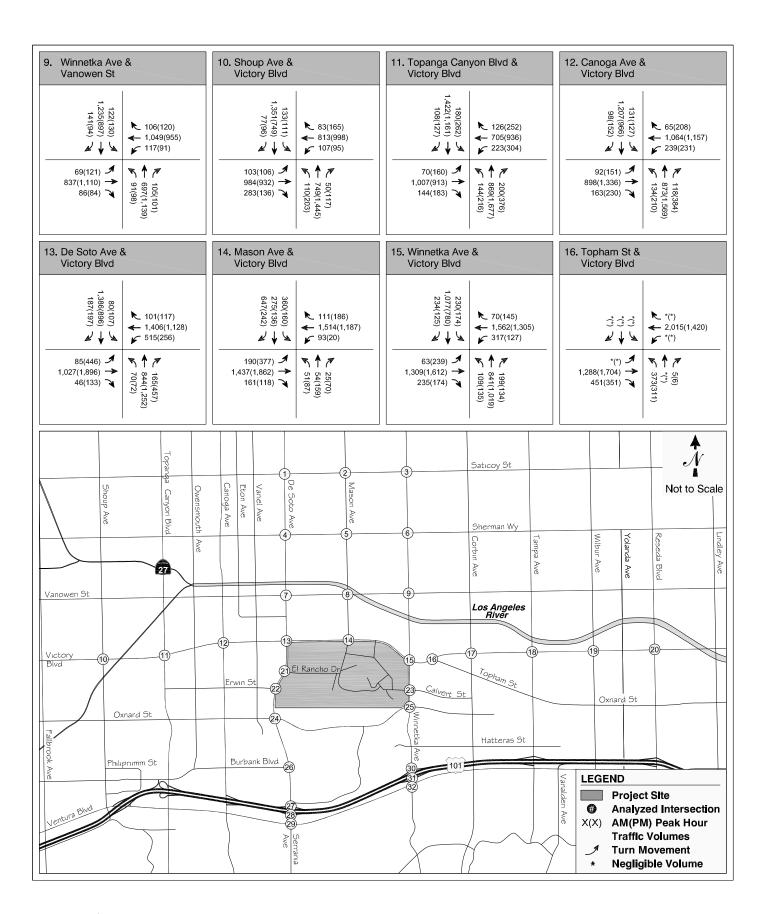
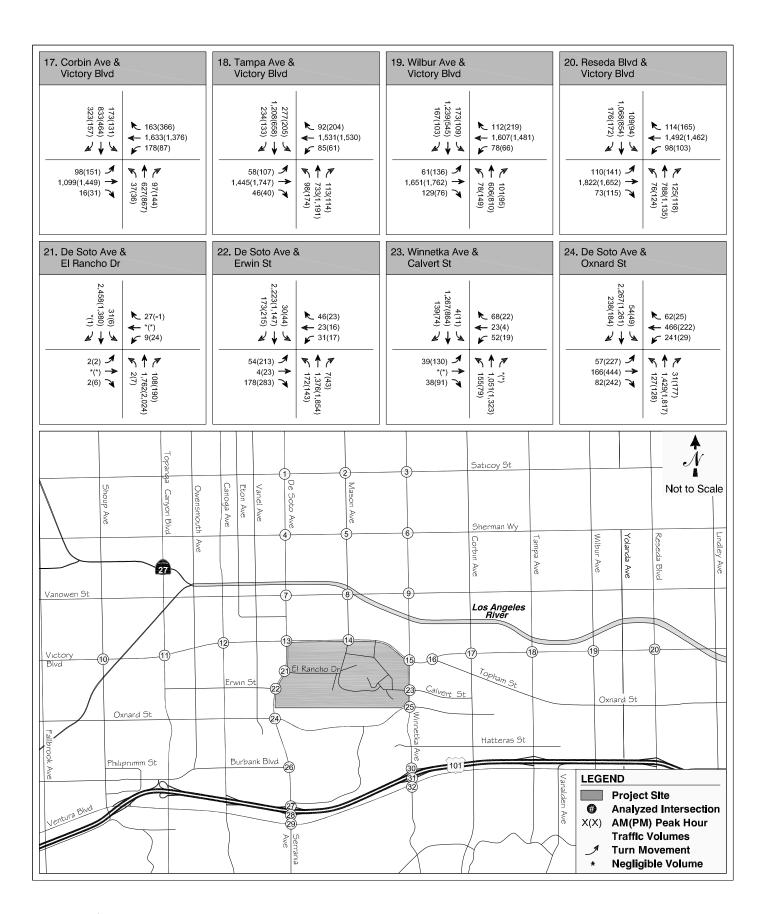
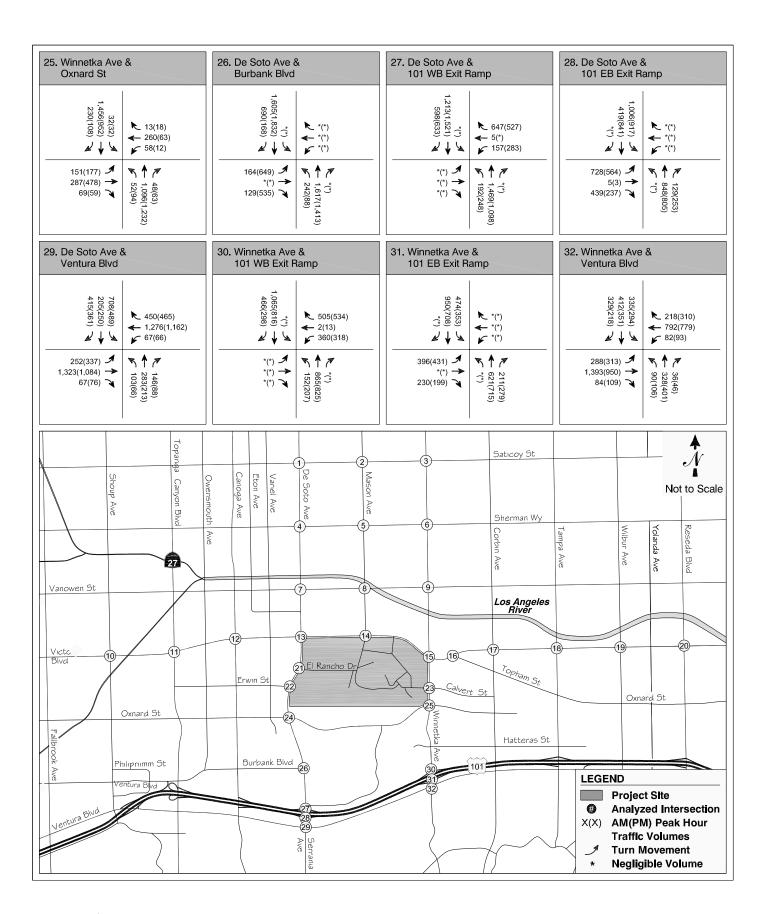


TABLE 6
PIERCE COLLEGE FACILITIES MASTER PLAN UPDATE
TRIP GENERATION ESTIMATES: ACADEMIC GROWTH


	Student		A۱	/I Peak Hour	[a]	PM Peak Hour [a]		
	FTE	Daily	ln	Out	Total	ln	Out	Total
Existing Pierce College In/Out Trips (No Mason Street Driveway	 vember 200 	 08/March 20)09) 624	146	770	327	352	679
Lot 7 Driveway on Victory Boulevard			447	65	512	159	122	281
Calvert Street Driveway			388	90	478	197	250	447
El Rancho Drive Driveway			<u>171</u>	<u>41</u>	<u>212</u>	<u>207</u>	<u>42</u>	<u>249</u>
Total Driveway Trips		19,720	1,630	342	1,972	890	766	1,656
Estimate for On-Street Parkers [b]		990	<u>82</u>	<u>17</u>	<u>99</u>	<u>45</u>	<u>38</u>	<u>83</u>
Estimated Total Existing Trips		20,710	1,712	359	2,071	935	804	1,739
Empirical Trip Rates Based on 2008-200 FTE (2008-2009) [c] 2008-2009 Trip Rate per FTE	99 Data 16,079	1.29	83%	17%	0.13	54%	46%	0.11
Base and Future FTE FTE (2001-2002 Base) [d] FTE (2008-2009 Existing) [c] FTE (2014-2015 Buildout) [c]	13,591 16,079 15,500							
Trips Added by Pierce College Academ								
Change in FTE: 2002 to 2009	2,488	3,210	268	55	323	148	126	274
Change in FTE: 2009 to 2015	<u>(579)</u>	<u>(750)</u>	<u>(62)</u>	<u>(13)</u>	<u>(75)</u>	<u>(35)</u>	<u>(29)</u>	<u>(64)</u>
Change in FTE: 2002 to 2015	1,909	2,460	206	42	248	113	97	210

Notes:


- a. Trip estimates are based on November 2008 and March 2009 manual in/out counts and estimated FTE.
- b. Estimated existing trips generated by Pierce College students parked on surrounding street frontages (Victory Boulevard and Winnetka Avenue). Assumed to be 5% addition to driveway trips, based on percent of existing peak parking demands that are on-street
- c. Source: Pierce College, November 2009.
- d. Source: Pierce College, June 2002.



- <u>De Soto Avenue/Vanowen Street</u> Restripe eastbound approach of Vanowen Street from the existing left-turn lane, two through lanes, and right-turn lane to one left-turn lane, two through lanes, and one shared through/right-turn lane.
- <u>Shoup Avenue/Victory Boulevard</u> Restripe northbound approach of Shoup Avenue from the existing left-turn lane, one through lane, and shared through/right-turn lane to one left-turn lane, two through lanes, and one right-turn lane.
- <u>Topanga Canyon Boulevard/Victory Boulevard</u> Widen Victory Boulevard on the eastern leg and restripe from the existing dual left-turn lanes, two through lanes, and right-turn lane to dual left-turn lanes, three through lanes, and one right-turn lane.
- <u>Canoga Avenue/Victory Boulevard</u> Restripe westbound approach of Victory Boulevard from the existing left-turn lane, three through lanes, and right-turn lane to one left-turn lane, three through lanes, and one shared through/right-turn lane.

These improvements were assumed to be in place as part of the cumulative base traffic forecasts in this study.

The Transportation Improvement and Management Program (TIMP) set forth in the Warner Center Specific Plan also includes additional future improvements at certain of the study intersections. The Specific Plan also requires that developers within Warner Center pay a Traffic Impact Assessment (TIA) fee to help pay for these improvements. However, since the TIA fee by design does not fully fund these improvements (since it funds only the portion of the improvements needed as a result of Warner Center future development), these improvements have not been assumed as a baseline condition in this study. Instead, they are considered as applicable later in the mitigation section of this report.

PROJECT TRAFFIC PROJECTIONS

Project Trip Generation

Future traffic volumes were projected for the Pierce College campus for buildout (Year 2015) of the updated campus Master Plan. The methodology for development of the volume projections included:

 Academic Growth (Students, Faculty/Staff and Visitors) – The Master Plan envisions academic growth to 15,500 FTE students by 2015. Growth in trips generated by students, faculty/staff, and campus visitors related to this projected academic growth were estimated by applying empirical trip generation rates derived from existing Pierce College conditions.

Empirical trip generation rates per FTE were derived through comparison of the total number of existing vehicles entering and exiting the campus to the existing (year 2008-2009) estimated student FTE. The rates were adjusted upward to incorporate those students who currently park on-street on either Victory Boulevard or Winnetka Avenue who were not captured in the in/out traffic counts. Based on this analysis, it is estimated that, on average, the number of vehicle trips currently generated per FTE on the Pierce College campus is as follows:

Vehicle Trips per Student FTE					
Daily AM Peak Hour PM Peak Hour					
1.29	0.13	0.11			
	(83% in/17% out)	(54% in/46% out)			

These trip generation rates were applied to the projected future FTE to project the increase in future trips generated by academic purposes through 2015.

Table 6 summarizes the estimated incremental increase in external trips generated on the Pierce College campus related to the future campus academic population growth from the Pierce College Year 2002 FTE baseline to Year 2015. As can be seen, a total net increase of about 2,460 daily, 248 AM peak hour, and 210 PM peak hour external trips are projected based on the increases in FTE between 2002 and 2015.

Project Traffic Distribution and Assignment

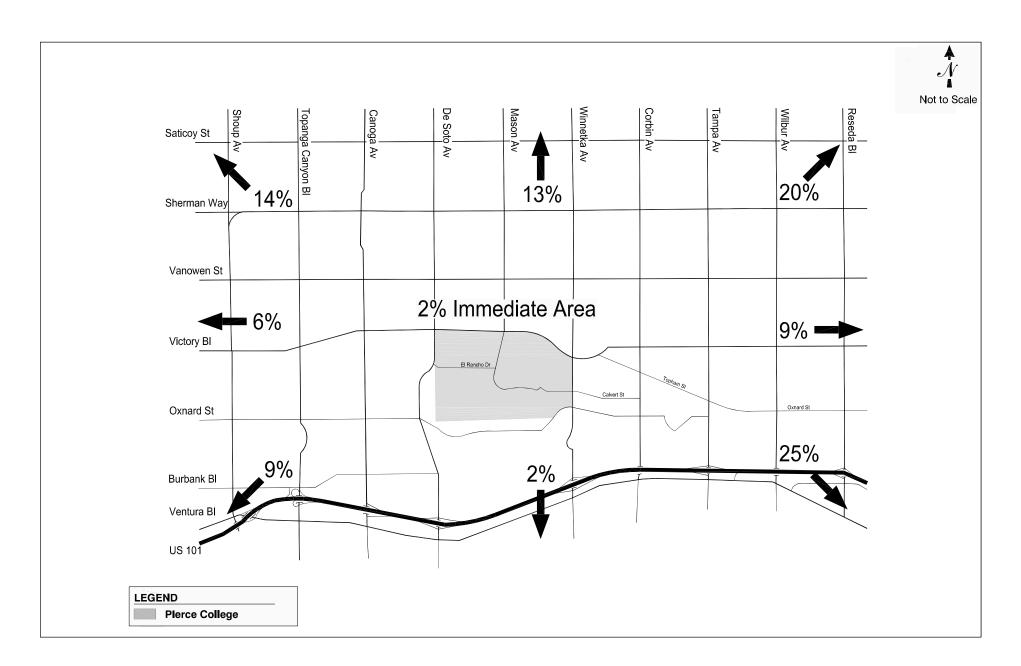
A trip distribution pattern was developed for the Pierce College campus based on inspection of two data sources: zip code data of existing Pierce College student residences (supplied by Pierce College for fall 2004); and existing volumes and turning movements at the campus access points (Brahma Drive, Mason Street, Lot 7 driveway, and El Rancho Drive) as an indication of both the existing split of traffic accessing the campus between the various access points and the existing direction of travel of these trips at the access points.

The following table summarizes the top 10 zip codes, all of which are in the San Fernando Valley, identified as residence locations of Pierce College students:

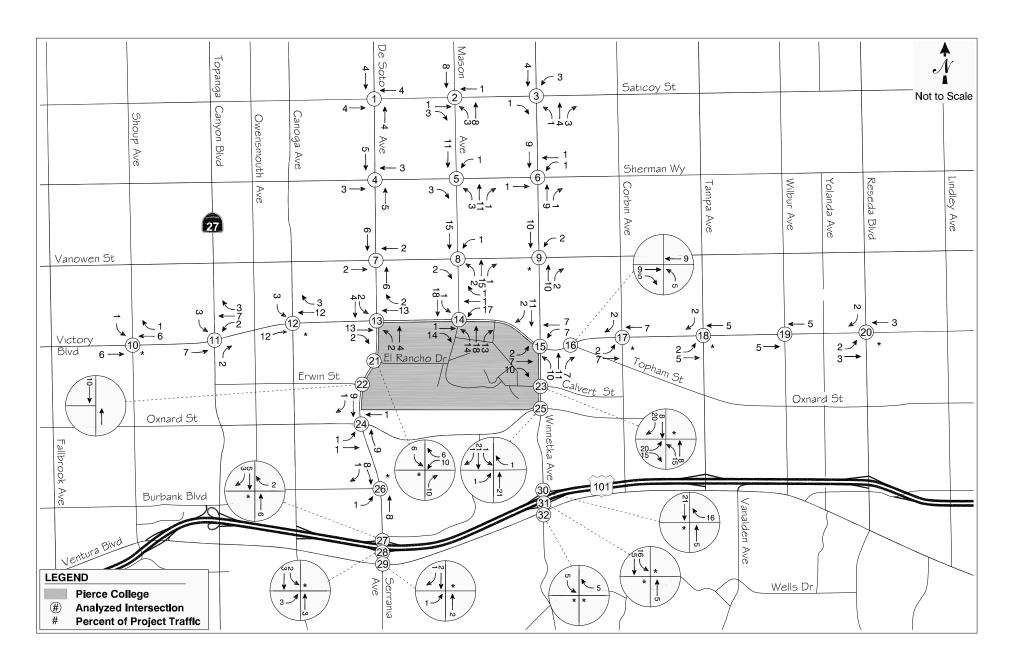
TABLE 7
DISTRIBUTION OF ZIP CODES OF RESIDENCE
PIERCE COLLEGE STUDENTS – FALL 2004

ZIP CODE	FREQUENCY	PERCENT
91335	1,933	10.29%
91306	1,314	7%
91304	1,266	6.74%
91367	1,105	5.88%
91325	777	4.14%
91311	773	4.12%
91356	706	3.76%
91344	698	3.72%
91307	695	3.70%
91406	683	3.64%
Other	8,828	47.01%
Total	18,778	100.0%

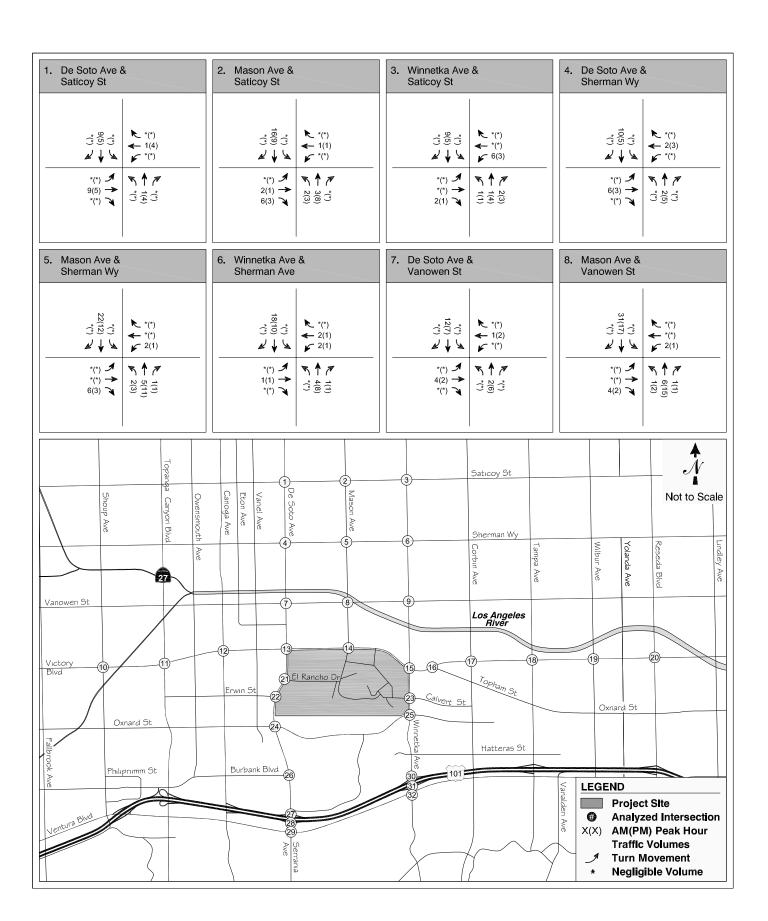
Source: Pierce College, May 2009.

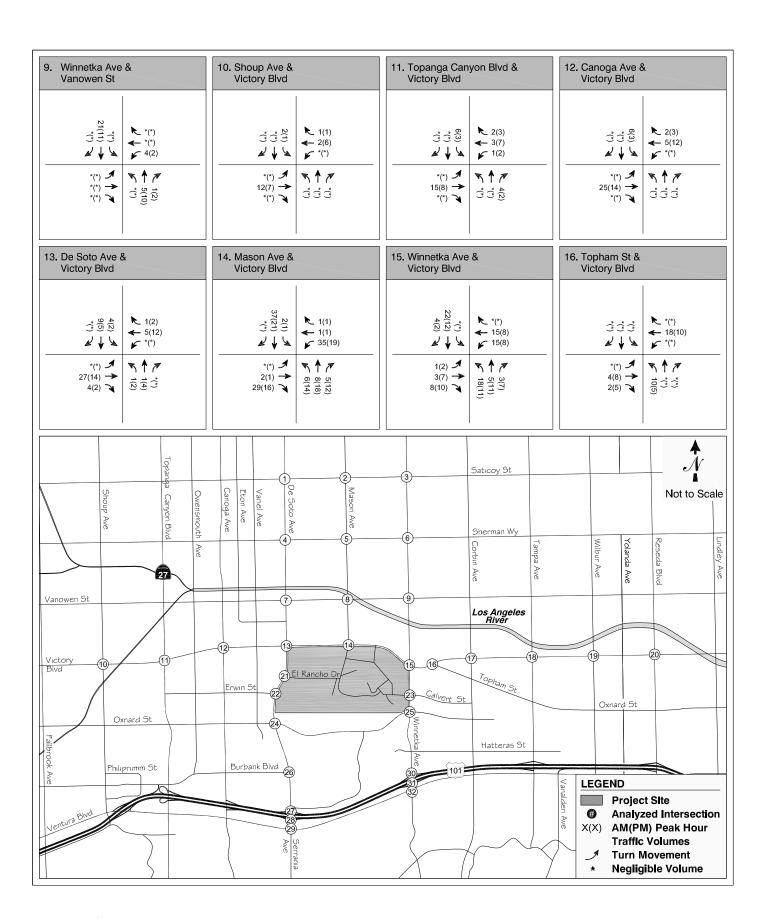

Taking this data into consideration along with the direction of travel at the campus access points, a trip distribution pattern was developed for project trips as illustrated in Figure 12.

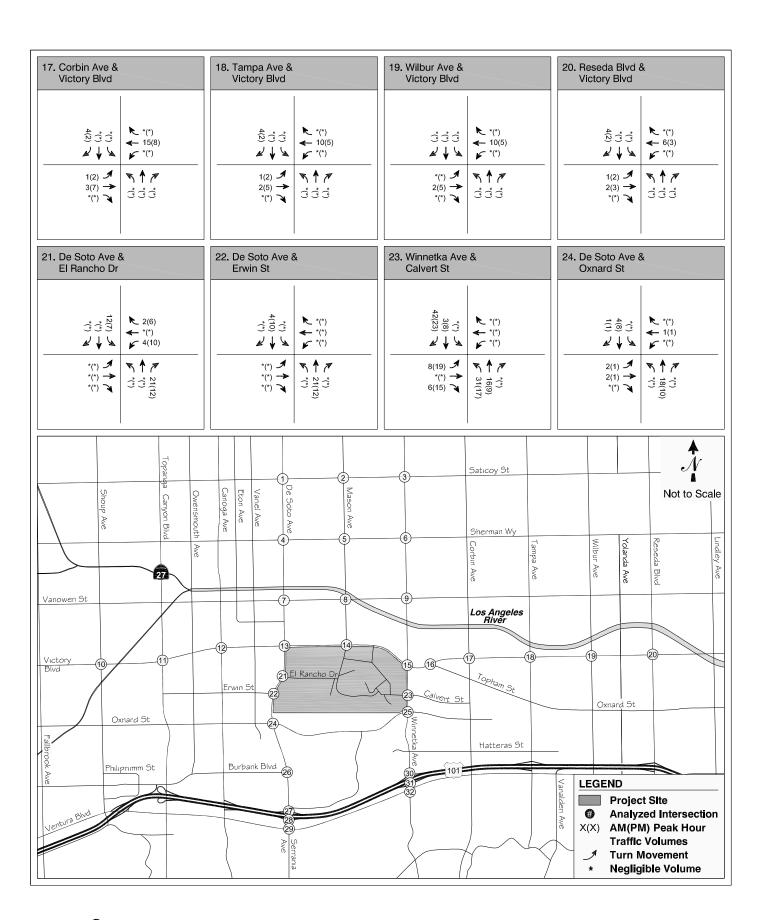
Using the estimated trip generation and the distribution patterns developed above, the traffic generated by the proposed project was assigned to the street network following the trip assignment percentages shown in Figure 13 for the academic uses.

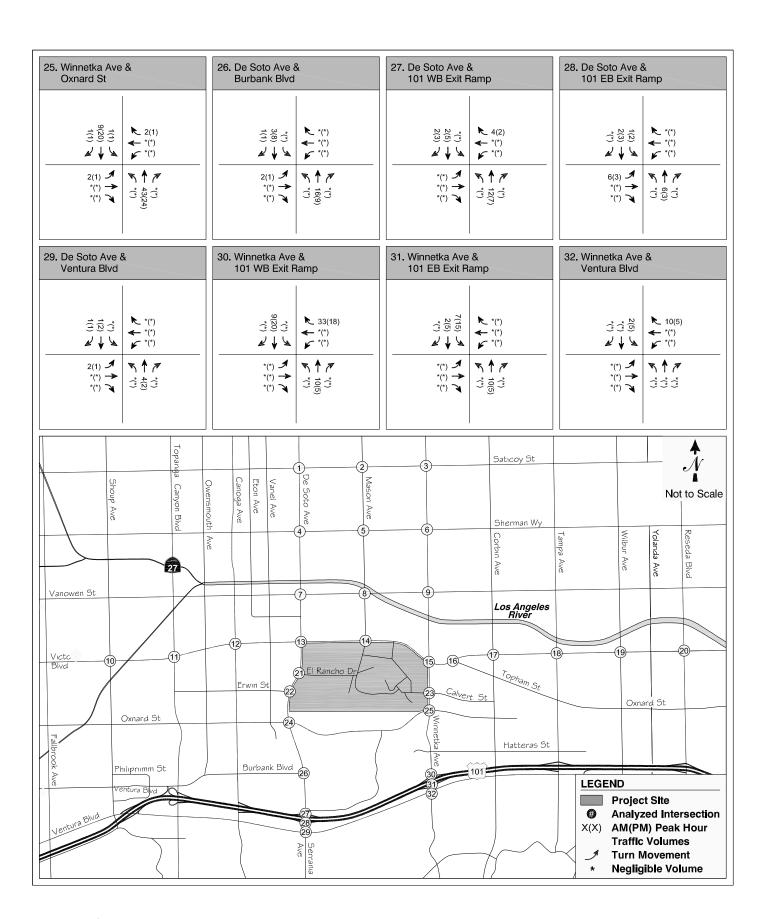

The net incremental project only traffic volumes generated by the buildout of the proposed Master Plan at the study intersections are shown on Figure 14.

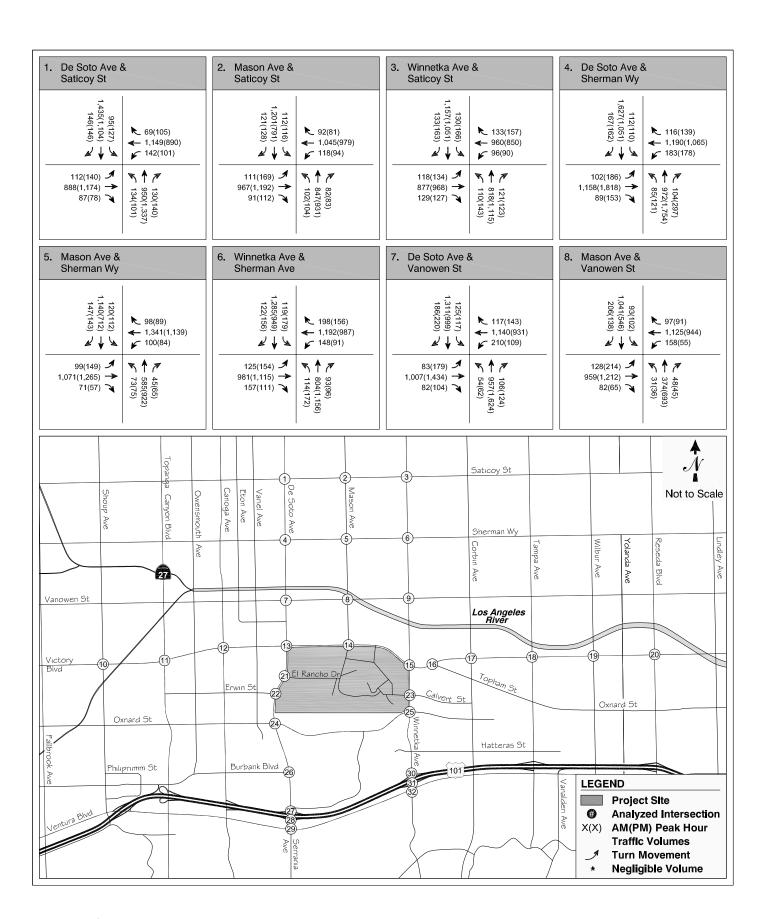
CUMULATIVE PLUS PROJECT TRAFFIC PROJECTIONS

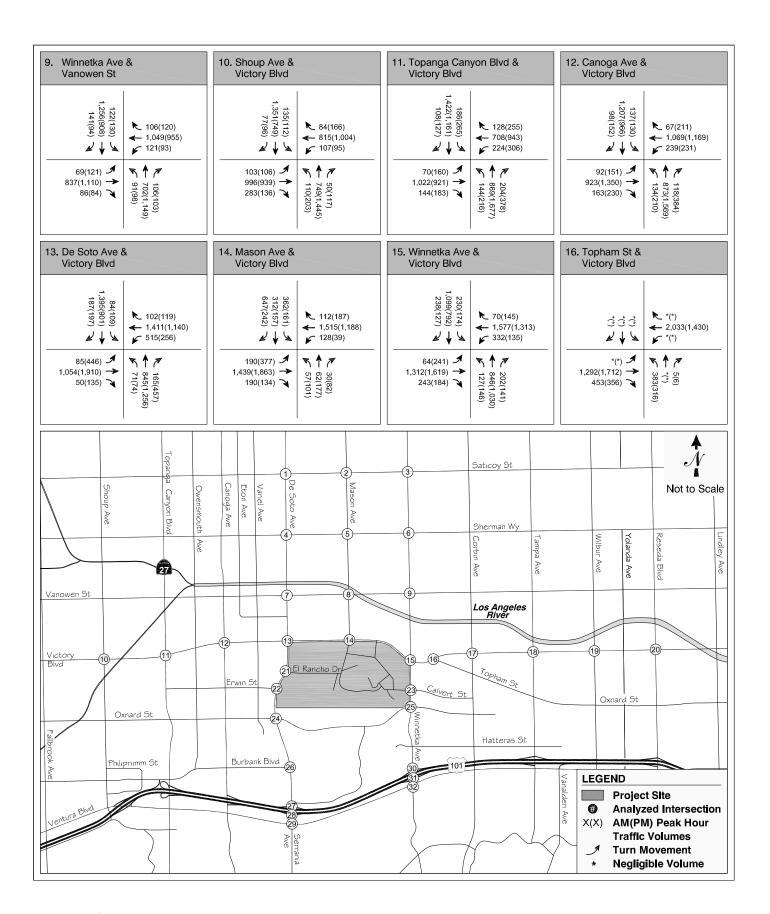

The project-generated traffic volumes shown in Figure 14 were then added to the cumulative base traffic projections shown in Figure 11 to yield the cumulative plus project traffic forecasts. The resulting projected cumulative plus project peak hour traffic volumes are presented in Figure 15.

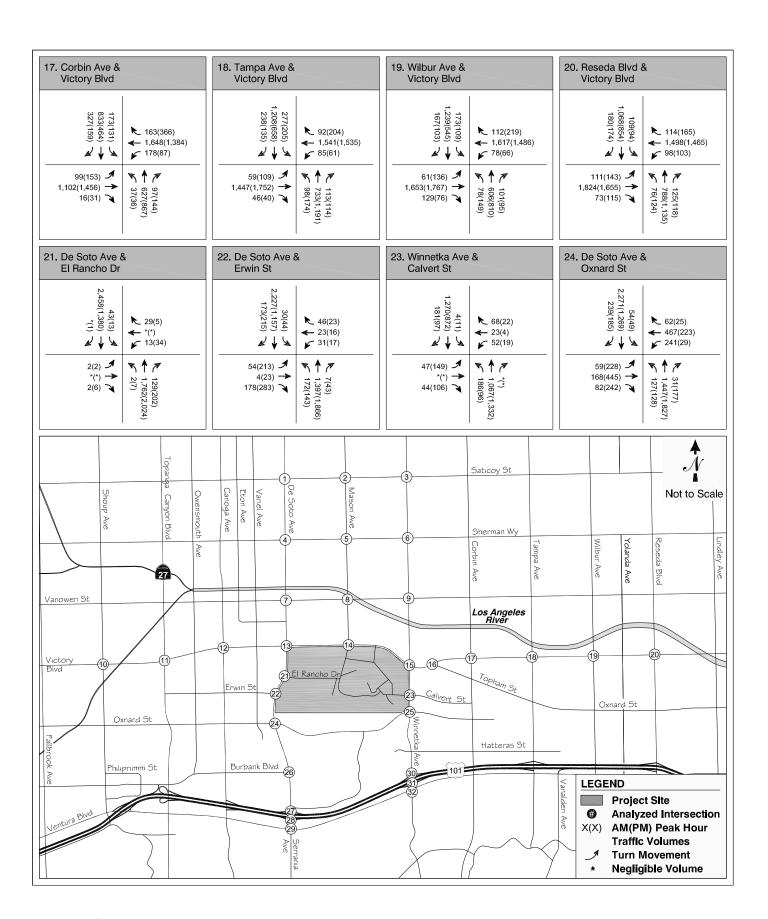


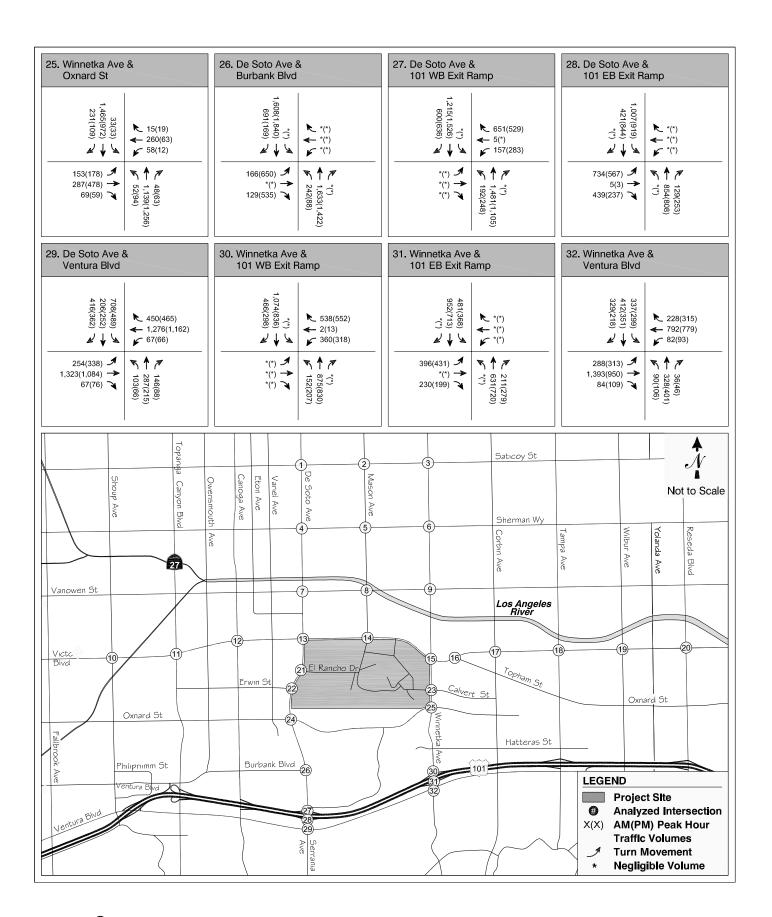












IV. TRAFFIC IMPACT ANALYSIS

This chapter presents an analysis of the potential impacts of the traffic generated by buildout of the Pierce College Facilities Master Plan project on the local street system. The analysis compares the projected levels of service at each study location under cumulative conditions both with and without the project to determine potential impacts, using significance criteria established by the City of Los Angeles.

CRITERIA FOR DETERMINATION OF SIGNIFICANT TRAFFIC IMPACT

LADOT has established threshold criteria that determine if a project has a significant traffic impact at a specific intersection. According to the LADOT criteria, a project impact would be considered significant if the following conditions were met:

	ection Condition	
With Project Traffic		Project-Related Increase
LOS	V/C Ratio	in V/C Ratio
С	> 0.70 - 0.80	Equal to or greater than 0.04
D	> 0.80 - 0.90	Equal to or greater than 0.02
E, F	> 0.90	Equal to or greater than 0.01

CUMULATIVE BASE INTERSECTION OPERATING CONDITIONS

This section presents an analysis of potential future traffic conditions under Year 2015 Cumulative Base conditions if no growth were assumed to occur on the Pierce College campus between the year 2002 FTE baseline and Year 2015. The cumulative base traffic volumes projected in Chapter III were analyzed using the level of service methodologies described in Chapter II to forecast cumulative base peak hour levels of service at the study locations.

The first columns in Table 8 summarize the results of this analysis. As can be seen, the following 13 study intersections are projected to operate at LOS E or F during one or both peak hours under Year 2015 Cumulative Base conditions:

- De Soto Avenue & Saticoy Street
- De Soto Avenue & Sherman Way
- Winnetka Avenue & Vanowen Street
- Shoup Avenue & Victory Boulevard
- Topanga Canyon Boulevard & Victory Boulevard
- Canoga Avenue & Victory Boulevard
- De Soto Avenue & Victory Boulevard
- Winnetka Avenue & Victory Boulevard
- Corbin Avenue & Victory Boulevard
- Tampa Avenue & Victory Boulevard
- Wilbur Avenue & Victory Boulevard
- Reseda Avenue & Victory Boulevard
- Winnetka Avenue & Ventura Boulevard

This represents a slight deterioration in operating conditions from existing conditions since, as discussed in Chapter II (Table 2), 11 of the intersections currently operate at LOS E or F during one or both peak hours. Thus, background traffic growth and traffic generated by related projects will have some impact on operating conditions in the study area even without consideration of potential growth on the Pierce College campus.

The cumulative base conditions projected in Table 8 and discussed above assume implementation of the committed baseline transportation system improvements described in Chapter III. These cumulative base projections also include the subtraction of academic trips generated based on 2002-2009 FTE, as shown on Figure 10, contributing to slightly improved LOS projections than if those volumes had been left in the cumulative base projections.

PROJECT TRAFFIC IMPACT ANALYSIS

The cumulative plus project traffic volumes as projected in the previous chapter were analyzed to determine potential future operating conditions and traffic impacts with the addition of incremental project-generated traffic associated with buildout of the Pierce College Master Plan through 2015. The middle columns in Table 8 show the results of this analysis.

TABLE 8
INTERSECTION LEVEL OF SERVICE ANALYSIS
CUMULATIVE BASE AND CUMULATIVE PLUS PROJECT CONDITIONS

	D I.	Cumul		Cumula		Project	Significant		-	Project	Beeldeel
Intersection	Peak Hour	Base 2	LOS	Project V/C	LOS	Increase in V/C	Project Impact	Mitigat V/C	LOS	Increase in V/C	Residual Impacts
*1. De Soto Av &	АМ	0.933	Е	0.935	E	0.002	NO				•
Saticoy St *2. Mason Av &	PM AM	0.984 0.885	E D	0.987 0.892	E D	0.003 0.007	NO NO				
Saticoy St	PM	0.839	D	0.843	D	0.007	NO NO				
*3. Winnetka Av & Saticoy St	AM PM	0.829 0.877	D D	0.833 0.879	D D	0.004 0.002	NO NO				
**4. De Soto Av & Sherman Way	AM PM	0.796 1.041	C F	0.800 1.043	C F	0.004 0.002	NO NO				
**5. Mason Av & Sherman Way	AM PM	0.755 0.672	C B	0.764 0.676	C B	0.009 0.004	NO NO				
**6. Winnetka Av & Sherman Way	AM PM	0.872 0.872	D D	0.878 0.875	D D	0.006 0.003	NO NO				
**7. De Soto Av & Vanowen St	AM PM	0.852 0.876	D D	0.853 0.878	D D	0.001 0.002	NO NO				
*8. Mason Av & Vanowen St	AM PM	0.848 0.727	D C	0.859 0.732	D C	0.011 0.005	NO NO				
*9. Winnetka Av & Vanowen St	AM PM	0.931 0.939	E E	0.938 0.945	E E	0.007 0.006	NO NO				
**10. Shoup Av & Victory Blvd	AM PM	0.943 0.875	E D	0.947 0.879	E D	0.004 0.004	NO NO				
**11. Topanga Cyn Blvd & Victory Blvd	AM PM	0.744 0.975	C E	0.748 0.981	C E	0.004 0.006	NO NO				
**12. Canoga Av & Victory Blvd	AM PM	0.705 0.957	C E	0.712 0.963	C E	0.007 0.006	NO NO				
**13. De Soto Av & Victory Blvd	AM PM	0.798 0.987	C E	0.808 0.993	D E	0.010 0.006	NO NO				
**14. Mason Av & Victory Blvd	AM PM	0.701 0.662	C B	0.706 0.674	C B	0.005 0.012	NO NO				
**15. Winnetka Av & Victory Blvd	AM PM	1.051 0.971	F E	1.067 0.988	F E	0.016 0.017	YES YES	0.958 0.944	E E	-0.093 -0.027	NO NO
**16. Topham St & Victory Blvd	AM PM	0.869 0.716	D C	0.882 0.722	D C	0.013 0.006	NO NO				
**17. Corbin Av & Victory Blvd	AM PM	0.974 1.006	E F	0.981 1.010	E F	0.007 0.004	NO NO				
**18. Tampa Av & Victory Blvd	AM PM	1.003 1.146	F F	1.007 1.149	F F	0.004 0.003	NO NO				
**19. Wilbur Av & Victory Blvd	AM PM	1.066 0.932	F E	1.067 0.934	F E	0.001 0.002	NO NO				
**20. Reseda Blvd & Victory Blvd	AM PM	1.030 1.059	F F	1.035 1.061	F F	0.005 0.002	NO NO				
**21. De Soto Av & El Rancho Dr	AM PM	0.467 0.416	A A	0.468 0.430	A A	0.001 0.014	NO NO				
**22. De Soto Av & Erwin St	AM PM	0.678 0.512	B A	0.678 0.515	B A	0.000 0.003	NO NO				
**23. Winnetka Av & Calvert St	AM PM	0.555 0.453	A A	0.582 0.463	A A	0.027 0.010	NO NO				
**24. De Soto Av & Oxnard St	AM PM	0.813 0.691	D B	0.815 0.694	D B	0.002 0.003	NO NO				
**25. Winnetka Av & Oxnard St	AM PM	0.818 0.680	D B	0.824 0.689	D B	0.006 0.009	NO NO				

TABLE 8 INTERSECTION LEVEL OF SERVICE ANALYSIS CUMULATIVE BASE AND CUMULATIVE PLUS PROJECT CONDITIONS

	Peak	Cumul Base 2		Cumula Project		Project Increase	Significant Project	With P	•	Project Increase	Residual
Intersection	Hour	V/C	LOS	V/C	LOS	in V/C	Impact	V/C	LOS	in V/C	Impacts
**26. De Soto Av & Burbank Blvd West	AM PM	0.631 0.641	B B	0.633 0.644	B B	0.002 0.003	NO NO				
**27. De Soto Av & US101 WB Ramps	AM PM	0.683 0.708	B C	0.686 0.711	B C	0.003 0.003	NO NO				
**28. De Soto Av & US101 EB Ramps	AM PM	0.795 0.641	C B	0.797 0.643	C B	0.002 0.002	NO NO				
**29. De Soto Av & Ventura Blvd	AM PM	0.832 0.732	D C	0.835 0.733	D C	0.003 0.001	NO NO				
**30. Winnetka Av & US101 WB Ramps	AM PM	0.584 0.534	A A	0.594 0.545	A A	0.010 0.011	NO NO				
**31. Winnetka Av & US101 EB Ramps	AM PM	0.729 0.701	C C	0.737 0.713	C	0.008 0.012	NO NO				
**32. Winnetka Av & Ventura Blvd	AM PM	0.962 0.992	E E	0.962 0.992	E E	0.000 0.000	NO NO				

Notes:

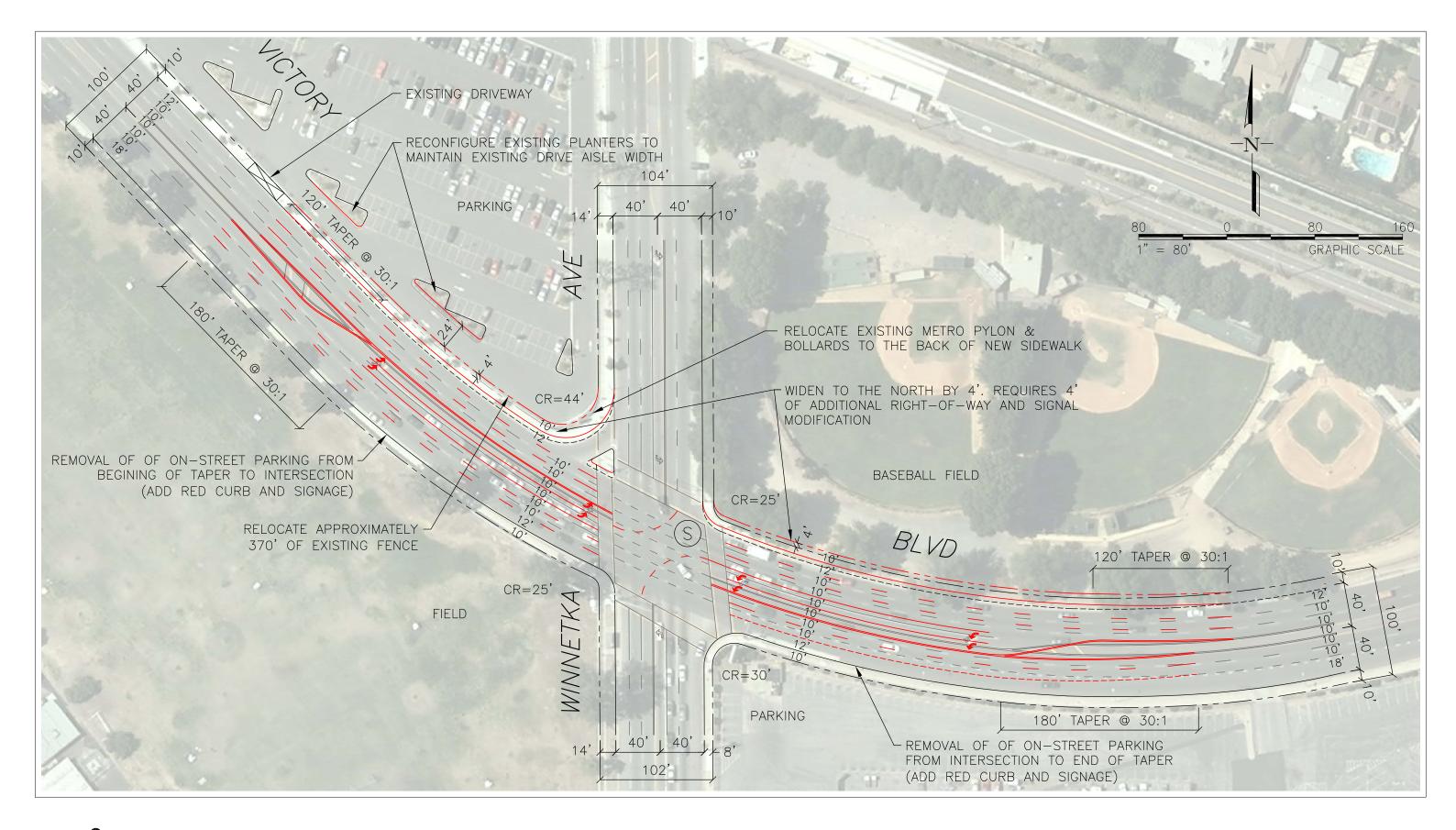
* Intersection is currently operating under ATSAC system.

** Intersection is currently operating under ATCS system.

As indicated in the table, 13 of the study intersections are projected to operate at LOS E or F during one or both peak hours under cumulative plus project conditions. Application of the City of Los Angeles' significance criteria indicates that the project would create significant traffic impacts at one study intersection:

Winnetka Avenue & Victory Boulevard

This impact would be generated by the estimated general growth in academic-related traffic to/from the campus from the 2002 campus base year to the 2015 Master Plan buildout year.


TRAFFIC MITIGATION MEASURES

The traffic impact analysis presented above determined that buildout of the Pierce College Master Plan would result in significant impacts on operating conditions at one of the study intersections. A potential mitigation measure to address this impact is discussed below:

• Winnetka Avenue and Victory Boulevard – This intersection could be mitigated during both peak periods with the provision of dual left-turn lanes on both the eastbound and westbound approaches on Victory Boulevard. This mitigation would require the acquisition of four feet of right-of-way from the north side of Victory Boulevard, east and west of Winnetka Avenue. The mitigation would also require the removal of approximately 32 on-street parking spaces along the eastbound approach and departure of Victory Boulevard on either side of Winnetka Avenue. This would result in changing existing lane configurations for both the westbound and eastbound approaches on Victory Boulevard at Winnetka Avenue from one left-turn lane, two through lanes, and one shared through/right-turn lane to two left-turn lanes, two through lanes, and one shared through/right-turn lane, as shown on Figure 16.

The proposed mitigation is identified as a cumulative mitigation in the WCSP TIMP. The WCSP TIMP provides that future intersection improvements at these locations are to be funded in part by Warner Center Transportation Impact Assessment (TIA) fees paid by development within Warner Center. However, these improvements are not fully funded by the Warner Center TIA fee since the WCSP determined that a portion of the need for these improvements would be generated by existing traffic and other future development in the area outside of Warner Center (such as Pierce College growth).

Projected Year 2015 intersection operating conditions with implementation of the intersection mitigation measure described above are shown in the final columns in Table 8. As indicated in the table, the proposed intersection improvements would fully mitigate the Pierce College

WINNETKA AVENUE & VICTORY BOULEVARD PROPOSED INTERSECTION MITIGATION

project impact at the impacted intersection. Thus, with the mitigation measure proposed herein, no unavoidable significant impacts are anticipated.

V. NEIGHBORHOOD IMPACT ANALYSIS

Five neighborhood street segments were selected for analysis of potential neighborhood intrusion impacts of the proposed project. The five street segments include:

- Calvert Street east of Winnetka Avenue
- Oxnard Street east of Winnetka Avenue
- Hatteras Street east of Winnetka Avenue
- Oxnard Street west of Winnetka Avenue
- Oxnard Street east of De Soto Avenue

DAILY TRAFFIC PROJECTIONS

Existing 24-hour machine counts were conducted at the five locations in March 2009. The existing daily volumes are included in Table 9.

Future daily traffic volumes were projected in a manner similar to that used for the AM/PM peak hour analysis of the 32 intersections. Six percent ambient growth and related project volumes were added to Year 2009 existing volumes. As was done with the peak hour intersection analysis, to obtain Year 2015 Cumulative Base projections, the daily trips generated by the increase in FTE at the college between 2002 and 2009, were removed from the street network to replicate cumulative base conditions in 2015 without the student trips generated since 2002 on the street network. Once the cumulative base conditions for 2015 were established, the addition of incremental growth in project traffic based on increases in FTE between 2002 and 2015 in the cumulative plus project condition, allows for analysis of the impact of incrementally adding daily project trips generated by Pierce College between 2002 and 2015, and the public-private science partnership project.

Daily project volumes were added to Cumulative Base projections to obtain Cumulative plus Project projections. The distribution of daily project volumes was based on the distribution used for the AM and PM peak hour analysis. The distribution was refined using zip code data and driveway turning movement counts to better reflect the potential use of residential streets east of

TABLE 9
NEIGHBORHOOD TRAFFIC IMPACT ANALYSIS

		We	ekday 2-Way	/ Daily Volu	Impact Analysis			
Location	City	Existing ADT	Cumulative Base	Project Only	Cumulative plus Project	0/	Significance Threshold	Significant Impact?
Calvert Street								
east of Winnetka Avenue	Los Angeles	680	721	17	738	2.3%	+16.0%	No
Oxnard Street								
east of De Soto Avenue	Los Angeles	6,650	7,426	74	7,500	1.0%	+8.0%	No
Oxnard Street								
west of Winnetka Avenue	Los Angeles	8,120	8,570	99	8,669	1.1%	+8.0%	No
Oxnard Street								
east of Winnetka Avenue	Los Angeles	4,420	4,712	17	4,729	0.4%	+8.0%	No
Hatteras Street								
east of Winnetka Avenue	Los Angeles	1,040	1,102	17	1,119	1.5%	+12.0%	No

Winnetka Avenue. Given the percentage of students living in the neighborhood south of Victory Boulevard, east of Winnetka Avenue, and west of Reseda Boulevard (including areas south of Ventura Boulevard), about 2% of daily Pierce College traffic was estimated to travel on Oxnard Street, Hatteras Street, and Calvert Street east of Winnetka Avenue. Based on count data at the Calvert Street/Brahma Drive driveway, about a third of these trips (i.e., 0.7% of daily Pierce College traffic) was estimated to travel on Calvert Street. The remainder was split between Oxnard and Hatteras Streets. The daily traffic volumes for both the existing and future conditions are summarized in Table 9.

The existing daily traffic volumes on weekdays vary from a low of about 680 vehicles per day (vpd) on Calvert Street to a high of about 8,120 vpd on Oxnard Street. The proposed project is projected to add approximately 39 to 67 vpd on the five segments.

NEIGHBORHOOD IMPACT SIGNIFICANCE CRITERIA

The City of Los Angeles has established criteria for determining significant impacts on neighborhood streets. A local residential street is deemed significantly impacted based on an increase in the projected average daily traffic (ADT) volumes as follows:

Project-Related
Increase in Daily Traffic
16 percent or more of final ADT
12 percent or more of final ADT
10 percent or more of final ADT
8 percent of more of final ADT

The threshold for significance decreases as the volume on the residential street increases. An 8% increase would be significant if a segment's volume was over 3,000 vpd, but it would not be significant if the volume was less than 3,000 vpd.

ASSESSMENT OF SIGNIFICANT TRAFFIC IMPACT

The potential impacts of the proposed project traffic on the adjacent neighborhood impacts were assessed by applying the City's significance criteria to the projected traffic volumes. The results of the analysis, summarized in Table 9, indicate that the proposed project would not have a significant impact on any of the five neighborhood street segments studied.

VI. CONGESTION MANAGEMENT PROGRAM ANALYSIS

This section presents the Congestion Management Program (CMP) transportation impact analysis for the proposed project. This analysis was conducted in accordance with the transportation impact analysis (TIA) procedures outlined in the *2004 Congestion Management Program for Los Angeles County* (Los Angeles County Metropolitan Transportation Authority, July 2004). The CMP requires that, when an environmental impact report is prepared for a project, traffic and transit impact analyses be conducted for select regional facilities based on the quantity of project traffic expected to utilize these facilities.

CMP TRAFFIC IMPACT ANALYSIS

CMP Analysis Locations

The CMP guidelines for determining the study area of the analysis for CMP arterial monitoring intersections and for freeway monitoring locations are:

- All CMP arterial monitoring intersections where the proposed project is expected to add 50 or more trips during either the AM or PM weekday peak hours of adjacent street traffic.
- All CMP mainline freeway monitoring locations where the proposed project is expected to add 150 or more trips, in either direction, during either the AM or PM weekday peak hours.

The Cumulative plus Project traffic projections described in Chapter III were used to track the locations where the incremental additional project-generated trips at buildout may exceed these thresholds.

Based on this evaluation, two CMP arterial monitoring intersections were identified where the project may add 50 or more trips per hour:

- Topanga Canyon Boulevard & Victory Boulevard
- Winnetka Boulevard & Victory Boulevard

Two other study intersections, Winnetka Boulevard & Ventura Boulevard and Reseda Boulevard & Victory Boulevard, are also CMP arterial monitoring intersections. However, less than 50 project trips are projected to traverse these intersections in the AM and PM peak hours and thus CMP analysis of these intersections is not required.

In addition, one CMP mainline freeway monitoring location was identified where the proposed project may add 150 or more trips per hour in either direction:

U.S. 101 at Winnetka Avenue

It should be noted that the proposed project is expected to add more new trips to the segment of U.S. 101 east of Winnetka Avenue than to any other freeway segment, either along U.S. 101 or other freeways. Thus, the maximum level of project impact on the freeway system would be expected at this location.

Level of Service Methodologies

The "Critical Movement Analysis" (CMA) method of intersection capacity analysis was used to determine the intersection volume to capacity ratio and corresponding level of service for the two CMP arterial monitoring stations being studied. Existing, cumulative base, and cumulative plus project conditions were analyzed using the turning movement volumes and intersection characteristics described in previous chapters with LADOT's CALCADB CMA software. Both intersections are currently controlled by ATSAC and ATCS. In accordance with LADOT procedures, a capacity increase of 7% (0.07 V/C adjustment) was applied to reflect the benefits of ATSAC control at these intersections included in the ATSAC program. In accordance with LADOT procedures, a capacity increase of 3% (0.03 V/C adjustment) was applied to reflect the benefits of ATCS control at these intersections included in the ATCS program. With the combination of ATSAC and ATCS control at these locations, a total capacity increase of 10% (0.10 V/C adjustment) was applied at these locations, as per LADOT procedures.

The freeway segment levels of service are determined based on the computed demand-to-capacity (D/C) ratios and the definitions shown in Table 10. In accordance with values

TABLE 10 LEVEL OF SERVICE DEFINITIONS FOR FREEWAY MAINLINE SEGMENTS

Level of Service	Demand/Capacity Ratio
А	0.00-0.35
В	>0.35-0.54
С	>0.54-0.77
D	>0.77-0.93
Е	>0.93-1.00
F(0)	>1.00-1.25
F(1)	>1.25-1.35
F(2)	>1.35-1.45
F(3)	>1.45

Source: Los Angeles County Metropolitan Transportation Authority, 2004 Congestion Management Program for Los Angeles County, July 2004, Exhibit B-6. established in the 2000 *Highway Capacity Manual*, a capacity of 2,200 vehicles per hour per lane (vphpl) was utilized for freeway mixed-flow lanes.

Existing Conditions

Weekday AM and PM peak period intersection turning movement counts were conducted at the two CMP analysis intersections in May of 2007 for the intersection of Topanga Canyon Boulevard/Victory Boulevard and March of 2009 for the intersection of Winnetka Avenue/Victory Boulevard. An annual growth rate of one percent per year was applied to the count taken in 2007 to represent 2009 existing conditions. The existing weekday peak hour turning movements at the analyzed intersections are shown in Figure 3.

These volumes were analyzed utilizing the CMA methodology described above. Table 11 presents the results of this analysis. As can be seen, the analysis indicates that both intersections currently operate at LOS E conditions during one of the AM or PM peak hours.

Existing traffic volumes at the CMP freeway monitoring station were obtained from the California Freeway Performance Measurement System (PeMS: https://pems.eecs.berkeley.edu). Freeway LOS was analyzed utilizing the D/C methodology described above. Table 12 presents the results of this analysis. As can be seen, the analysis indicates that U.S. 101 currently operates at LOS C east of Winnetka Avenue.

Criteria for Determination of Significant Impact

For the purpose of a CMP TIA, a significant project impact occurs when the addition of project traffic increases demand at a CMP facility by 2% of capacity (i.e., V/C increase \geq 0.020), causing or worsening LOS F (V/C >1.000) operating conditions.

TABLE 11
CMP ARTERIAL INTERSECTION IMPACT ANALYSIS

				Cumula	ative	Cumula	tive +	Project	Significant	With Pr	oject	Project	
	Peak	Existi	ing	Bas	е	Proje	ect	Increase	Project	Mitiga	tion	Increase	Residual
Intersection	Hour	V/C	LOS	V/C	LOS	V/C	LOS	in V/C	Impact	V/C	LOS	in V/C	Impacts
*11. Topanga Cyn Blvd & Victory Blvd	AM PM	0.679 0.910	B E	0.744 0.975	CE	0.748 0.981	ВΟ	0.004 0.006	NO NO				
*15. Winnetka Av & Victory Blvd	AM PM	0.982 0.912	E E	1.051 0.971	F E	1.067 0.988	F E	0.016 0.017	YES YES	0.958 0.944	E E	-0.093 -0.027	NO NO

Notes:

^{*} Intersection is currently operating under both ATSAC and ATCS systems.

TABLE 12 CMP FREEWAY MAINLINE IMPACT ANALYSIS

						EXIS	TING C	ONDITIC	NS			CU	MULAT	IVE BAS	E					CUMUI	LATIVE F	LUS PR	OJECT			
			Cap	acity		EB			WB			EB			WB				EB					WB		
Freeway Analysis Locations	City	Peak	EB	WB	Volume	D/C	LOS*	Volume	D/C	LOS*	Volume	D/C	LOS*	Volume	D/C	LOS*	Volume	D/C	LOS*	D/C Change	Sig Impact?	Volume	D/C	LOS*	D/C Change	Sig Impact?
US101 east of Winnetka	Los Angeles		11,000			0.638		-, -	0.830	D	7,464	0.679		9,644	0.877	D		0.679	С	0.001	No	9,681	0.880	D	0.003	No
	3	PM	11,000	11,000	8,565	0.779	С	8,658	0.787	С	9,075	0.825	D	9,179	0.834	D	9,092	0.827	D	0.002	No	9,199	0.836	D	0.002	No

 $^{^{\}star}$ Note that F(0) through F(3) represent gradations of LOS F (see Table 12).

Arterial Intersection Impact Analysis

Year 2015 projected traffic volumes at the two analyzed CMP arterial monitoring intersections with and without the proposed project were analyzed utilizing the V/C methodology described above. As shown in Table 11, the project is projected to create a significant impact at one of the two CMP arterial monitoring intersections under Year 2015 conditions: Winnetka Avenue & Victory Boulevard.

However, with implementation of the intersection mitigation measures described in Chapter IV, this impact would be mitigated.

Freeway Impact Analysis

Projected Year 2015 traffic volumes and the resultant freeway capacity analysis for the cumulative base and cumulative plus project scenarios are presented in Table 12 for the one freeway analysis segment. As can be seen, based on the CMP significance criteria, no significant impact is projected on the U.S. 101 monitoring location east of Winnetka Avenue with the proposed project.

Since the project is expected to contribute more new traffic to this segment than to any other freeway segment and the project's impact at this location would not be significant, it can be concluded that the project would not have significant impacts elsewhere on the freeway system.

CMP TRANSIT IMPACT ANALYSIS

Summary of Existing and Proposed Transit Services

Existing Transit Services. As discussed in Chapter II, Pierce College is currently served by bus service provided by the Los Angeles County Metropolitan Authority (LACMTA) and the Santa Clarita Transit Authority (SCTA). Five bus routes currently provide direct service along Victory Boulevard, Winnetka Avenue, and De Soto Avenue adjacent to the campus: Metro Orange Line, Metro Line 164, Metro Line 243, Metro Line 244, and SCTA Commuter Route 796.

Current schedules indicate that the Orange Line operates approximately 152 buses per direction per weekday. In the AM peak hour (defined as 7:30 to 8:30 AM by the CMP), the Orange Line operates approximately 12 buses per direction. In the PM peak hour (defined as 4:30 to 5:30 PM by the CMP), the Orange Line operates approximately 12 buses per direction.

Metro Lines 164, 243, and 244 operate 55, 25, and 41 buses per direction per weekday, respectively. In the AM peak hour (defined as 7:30 to 8:30 AM by the CMP), Line 164 operates 3 buses in the eastbound direction and eight buses in the westbound direction. In the AM peak hour Line 243 operates two buses in the northbound direction and three buses in the southbound direction. In the AM peak hour Line 244 operates two buses in the northbound direction and five buses in the southbound direction. In the PM peak hour (defined as 4:30 to 5:30 PM by the CMP), Line 164 operates five buses in the eastbound direction and three buses in the westbound direction. In the PM peak hour Lines 243 and 242 both operate two buses per direction.

Currently, SCTA Line 796 operates five buses per direction per day. SCTA Line 796 operates only during the peak periods. Of these buses, two operate in the AM and PM peak hours.

The five routes combined currently provide 556 bus trips per weekday, of which 37 operate during the AM peak hour and 30 operate during the PM peak hour.

Significance Criteria

Project impacts on public transit services would be considered significant if the project results in a substantial increase in ridership on the existing public transit system, creating capacity shortages on the system and thereby necessitating system improvements to accommodate additional transit service.

Projected Increase in Pierce College Transit Trips

Potential increases in transit person trips generated at the Pierce College campus were estimated as follows. The estimated number of existing and future vehicle trips was converted to person trips by multiplying the number of vehicle trips by a factor of 1.4 (per the CMP). Baseline future

transit trips were then estimated by multiplying the future person trips by the transit mode split of 7% (also from the CMP as required for a primarily commercial development within one-quarter mile of a CMP transit corridor). As shown in Table 13, this results in an estimated increase in campus-generated transit person trips based solely on the projected increases in academic population of approximately 241 daily trips, 24 trips during the AM peak hour, and 21 trips during the PM peak hour.

Transit Impact Analysis

As discussed, the campus is immediately adjacent to five bus lines, including Metro's Orange Line. With the proximity of Metro's Orange Line and other existing transit lines, future transit service levels and capacity would be sufficient in the vicinity of the Pierce College campus (including along the BRT corridor itself and on north-south feeder bus lines such as Line 243 and Line 244 on Winnetka Avenue and De Soto Avenue). While transit trips generated on the Pierce College campus are projected to increase, significant impacts on transit system capacity are not anticipated given the number of new transit trips projected relative to the anticipated future transit system capacity.

TABLE 13 CMP TRANSIT ANALYSIS

	Factor	Daily	AM Peak Hour	PM Peak Hour
Existing Trips Vehicle Trips [a] Person Trips [b] Transit Person Trips [c]	1.4 7.0%	20,710 28,994 2,030	2,071 2,899 203	1,739 2,435 170
Future Trips Vehicle Trips [a] Person Trips [b] Transit Person Trips:	1.4 7.0%	23,170 32,438 2,271	2,319 3,247 227	1,949 2,729 191
Net New Trips Vehicle Trips [a] Person Trips [b] Transit Person Trips:	1.4 7.0%	2,460 3,444 241	248 347 24	210 294 21

Notes:

- a. Estimated existing and future vehicle trips from Table 6.
- b. Person trips estimated from vehicle trips via application of 1.4 person to vehicle ratio as per Appendix B of 2004 LA County CMP.
- c. Transit mode split as per Appendix B of 2004 LA County CMP.

VII. PARKING AND SITE ACCESS IMPACT ANALYSIS

This chapter presents an analysis of the projected future parking supply, peak parking demand, and site access associated with buildout of the proposed Pierce College Master Plan. The proposed parking supply was reviewed with respect to the future parking demands to ensure that the plan provides sufficient parking supply to accommodate the projected needs. In accordance with the *L.A. Thresholds Guide: Your Resource for Preparing CEQA Analyses in Los Angeles*, (City of Los Angeles, 2006), project access impacts would be considered significant if the primary site driveway(s) are projected to operate at an unacceptable LOS E or F during one or both of the AM and PM peak hours.

FUTURE PARKING SUPPLY

The Master Plan proposes some minor changes to the future parking supply serving the Pierce College campus. There is a reduction of approximately 32 on-street parking spaces as a result of the proposed mitigation measure for the intersection of Victory Boulevard and Winnetka Avenue. The existing and projected future parking supply is summarized in the following table:

TABLE 14
SUMMARY OF EXISTING AND PROJECTED PARKING SUPPLY

	Existing Number of Spaces [a]	Total Future Spaces			
Existing On-Campus Parking Facilities	3,719	3,719			
New On-Campus Parking Facilities	n/a	0			
Future On-Campus Subtotal	n/a	3,719			
Off-Campus Street Parking [b]	271	239			
Grand Total	3,990	3,958			

Notes:

- a. Existing parking inventory conducted by National Data & Surveying Services, April 2009.
- b. Future on-street spaces reduced to reflect possible loss of spaces on Victory Boulevard due to implementation of traffic mitigation measures.

PROJECTED PEAK PARKING NEEDS

Future peak parking needs were projected for buildout (Year 2015) of the Master Plan. The methodology used to develop the parking demand projections consisted of:

Academic Growth (Students, Faculty/Staff and Visitors) – The Master Plan envisions academic growth to 15,500 FTE students by Year 2015. Growth in parking need generated by students, faculty/staff, and campus visitors related to this projected academic growth were estimated by applying empirical parking requirement ratios derived from existing Pierce College conditions.

Empirical parking requirement ratios per FTE were derived through comparison of the total number of existing vehicles parked on the campus at the 11:00 AM weekday daytime peak and at the 7:00 PM weekday evening peak to the existing (year 2008-2009) estimated student FTE. For planning purposes, the observed peak parking demands were adjusted upward by a 10% circulation factor, since parking facilities are typically considered to be fully utilized when used at 85 to 90% of capacity. Based on this analysis, it is estimated that, on average, the peak parking requirement ratio currently generated per FTE on the Pierce College campus is as follows:

Peak Parking Requirement - Spaces							
per Stud	lent FTE						
Weekday Daytime	Weekday Evening						
Peak	Peak						
0.186	0.144						
spaces per FTE	spaces per FTE						

These parking requirement ratios were applied to the projected future FTE to project the future peak parking requirement generated by academic purposes at Year 2015 buildout.

Table 15 presents the results of this analysis, including both the derivation of the empirical parking ratios and the projection of future peak parking requirements. As can be seen, a peak requirement for about 2,887 parking spaces is projected during weekdays and 2,226 spaces on weeknights in support of future academic activities at buildout.

PARKING SUPPLY AND DEMAND ANALYSIS

Tables 14 and 15 show that the estimated future supply of parking available to support activities on campus (3,958 spaces) would be adequate to accommodate the projected peak parking needs at buildout (2,887 spaces weekday daytime and 2,226 spaces weeknight). Surpluses of about 1,200 spaces (weekday) to 1,800 spaces (weeknight) are projected.

PROJECT ACCESS PLAN

Existing and future vehicular access to the Pierce College campus is and would be obtained via four access points: Brahma Drive via a signalized intersection with Winnetka Avenue, an unsignalized driveway onto Victory Boulevard from Parking Lot 7, Mason Street via a signalized intersection with Victory Boulevard, and El Rancho Drive via a signalized intersection with De Soto Avenue. The unsignalized driveway onto Victory Boulevard from Parking Lot 7 is limited to right-out only for outbound vehicles while inbound vehicles can enter via a right or left turn into

TABLE 15
PIERCE COLLEGE FACILITIES MASTER PLAN
PEAK PARKING ANALYSIS: ACADEMIC GROWTH

	Existing (2008-2009)		² Buildout
	Weekday Daytime [a]	Weekday Evening (7 PM)	Weekday Daytime	Weekday Evening
Chudant Banulation	2 47 [4]		24,	
Student Population Enrollment [b]	22,164		22,931	
FTE [b]	16,079		15,500	
1 1 E [0]	10,079		15,500	
Parking Demand & Requirement				
Peak Parking Demand [c]				
On-Campus Students	2,167	1,715		
On-Campus Staff	386	218		
Off-Campus/On-Street Spaces	170	166		
Total	2,723	2,099		
Contingency/Circulation Factor	10%	10%		
Parking Requirement				
Total [d]	2,995	2,309	2,887	2,226
Parking Requirement Ratio (Spaces per FTE)	0.186	0.144		
Parking Supply & Adequacy				
Parking Supply				
Existing On-Campus Spaces [e,f]	3,719	3,719	3,719	3,719
New On-Campus Spaces	n/a	n/a	0	0
Off-Campus/On-Street Spaces [g]	<u>271</u>	<u>271</u>	<u>239</u>	<u>239</u>
Total [d]	3,990	3,990	3,958	3,958
Surplus/(Shortfall)				
Relative to Requirement	995	1,681	1,071	1,732
Tiolative to Hequilement	555	1,001	1,071	1,702

Notes:

- a. Peak weekday daytime parking demand at 12 PM, per campus parking utilization surveys conducted 4/29/09+.
- b. Existing enrollment is fall 2008; existing student FTE is 2008-2009 annual. Source: Pierce College, 2009.
- c. Source for existing peak parking demand: parking utilization surveys conducted 4/29/09 (see Appendix D). Future parking demand and requirement estimated using parking ratios empirically derived from surveys, applied to future FTE.
- d. Includes vehicles parked off-campus in immediately-fronting street spaces.
- e. Existing inventory includes approximately 65 unmarked parking spaces in dirt lots.
- f. Changes to existing supply estimated from Land Use Master Plan and illustrative Master Plan maps (see Appendix F).
- g. Future on-street spaces reduced to reflect possible loss of spaces due to implementation of traffic mitigation measures.

Parking Lot 7. The three remaining access points do not include any turn restrictions for inbound or outbound vehicles.

A pedestrian plaza is being constructed on the northeast corner of the Pierce College campus on the southwest corner of the intersection of Victory Boulevard & Winnetka Avenue. This plaza would enhance pedestrian access to the campus for pedestrians and patrons of the Orange Line and other transit lines serving this location.

LEVEL OF SERVICE AT PROJECT ACCESS POINTS

The signalized driveways were analyzed using the *Critical Movements Analysis* (Transportation Research Board, 1980) methodology to evaluate the ability of the project access plan to accommodate the anticipated traffic levels at the access points. For future with project conditions, through traffic on the surrounding roadways was increased for both ambient growth and related projects, as discussed in Chapter III. Project-generated traffic was also added. The three signalized driveways were analyzed as full movement driveways.

Table 8 in Chapter IV shows the resulting LOS for the three signalized driveways in the AM and PM peak hours. As Table 8 indicates, the driveways are projected to operate at LOS C or better for the AM and PM peak hours for all three locations. According to the criteria set forth in the City of Los Angeles' *CEQA Threshold Guide*, no significant project access impacts are anticipated.

VIII. SUMMARY AND CONCLUSIONS

This study was undertaken to analyze potential traffic and parking impacts of the proposed Pierce College Facilities Master Plan. The following summarizes the key findings of the study:

- AM and PM peak hour capacity analyses were conducted for a total of 32 intersections on the street system in the vicinity of the Pierce College campus. Eleven of these intersections currently operate at LOS E or F during the AM or PM peak hours.
- Under Year 2015 Cumulative Base (i.e., no project) conditions, 13 of the analyzed intersections are projected to operate at unacceptable LOS E or F conditions. The cumulative base forecasts include traffic generated by anticipated from 32 related projects, some of which are within the Warner Center Specific Plan area, and background traffic growth.
- Buildout of the proposed Master Plan is anticipated by the Year 2015. The projected campus population growth from the year 2002 Pierce College FTE baseline through Year 2015 Master Plan buildout is projected to generate a net incremental increase of approximately 2,460 daily trips, about 248 trips during the AM peak hour, and about 210 trips during the PM peak hour.
- Based on City of Los Angeles impact criteria, the proposed project is projected to have significant impacts at one of the study intersections (Winnetka Avenue and Victory Boulevard) if no mitigations were to be implemented. A mitigation strategy is proposed for this location that consists of intersection improvements. With implementation of the proposed mitigation measure, the project impact would be mitigated to a level of insignificance at the impacted location.
- The current campus parking accommodates the existing campus parking demands, with peak occupancies of about 68% of the available spaces used during the weekday late morning peak period and 53% at the 7:00 PM peak for evening classes. The proposed future parking supply on the Pierce College campus, assuming implementation of the parking system changes anticipated in the Master Plan and described herein, would be more than sufficient to accommodate projected parking demands on the campus generated by academic growth to Year 2015 plus additional parking demand generated by the public/private partnership project. In addition, no significant site access impacts are anticipated.
- Analyses of potential impacts on the regional transportation system conducted in accordance with CMP requirements determined that the project would not have a significant impact on the mainline freeway system nor the regional transit system. The project would have significant impacts on one CMP arterial monitoring intersection (Winnetka Avenue & Victory Boulevard), but the intersection mitigation measures

suggested in Chapter IV would also mitigate this CMP system impact to a level of insignificance.

REFERENCES

Draft Facilities Master Plan, Los Angeles Pierce College, July 2002.

Final Draft 2004 Congestion Management Program for Los Angeles County, Los Angeles County Metropolitan Transportation Authority, July 2004.

L.A. Thresholds Guide: Your Resource for Preparing CEQA Analyses in Los Angeles, City of Los Angeles, 2006.

Traffic and Parking Study for the Pierce College Facilities Master Plan Environmental Impact Report, Kaku Associates, July 2002.

Trip Generation, 7th Edition, Institute of Transportation Engineers, 2003.

APPENDIX A INTERSECTION CONFIGURATIONS

Cumulative Base & Cumulative Plus Project Existing (2002) Cumulative Plus Project Plus Mitigation Conditions SAME AS 1. De Soto Av & Saticoy St NO IMPACT Saticoy St **EXISTING** SAME AS 2. Mason Av & Saticoy St **NO IMPACT EXISTING** Saticoy St Mason Av SAME AS 3. Winnetka Av & NO IMPACT **EXISTING** Saticoy St Winnetka Av SAME AS 4. De Soto Av & Sherman Wy **NO IMPACT EXISTING** Sherman Wy SAME AS 5. Mason Av & **NO IMPACT EXISTING** Sherman Wy **LEGEND** # Number of critical signal phases Lane not striped, but functions as indicated.

Cumulative Base & Cumulative Plus Project Existing (2002) Cumulative Plus Project Plus Mitigation Conditions SAME AS 6. Winnetka Av & Sherman Wy NO IMPACT Sherman Wy **EXISTING** Winnetka Av 7. De Soto Av & Vanowen St Vanowen St NO IMPACT Vanowen St SAME AS 8. Mason Av & NO IMPACT **EXISTING** Vanowen St SAME AS 9. Winnetka Av & Vanowen St **EXISTING** NO IMPACT Vanowen St Winnetka Av 10. Shoup Av & Victory BI NO IMPACT Victory BI Shoup Av Shoup Av

LEGEND

(#) Number of critical signal phases

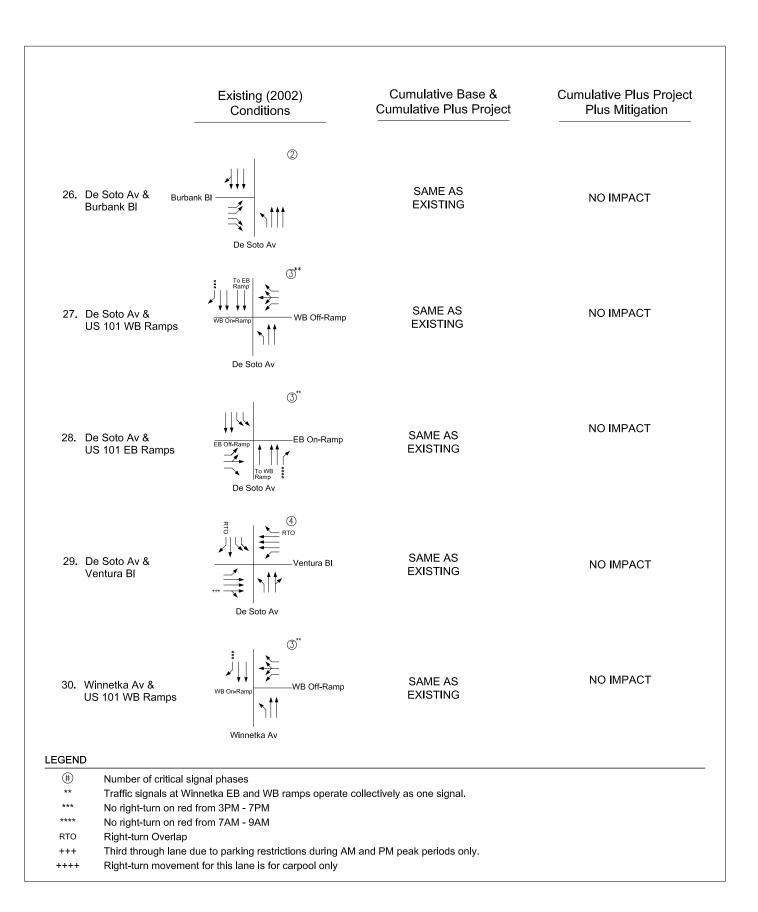
Lane not striped, but functions as indicated.

RTO Right-turn Overlap

[b] Third through lane due to parking restrictions during PM peak periods only, operates as right-turn lane at other times.

Cumulative Base & Cumulative Plus Project Existing (2002) Cumulative Plus Project Plus Mitigation Conditions NO IMPACT 11. Topanga Canyon Bl & Victory BI Topanga Canyon Bl Topanga Canyon BI NO IMPACT 12. Canoga Av & Victory BI NO IMPACT SAME AS 13. De Soto Av & **EXISTING** Victory BI SAME AS NO IMPACT 14. Mason Av & **EXISTING** Victory BI SAME AS 15. Winnetka Av & **EXISTING** Victory BI Winnetka Av **LEGEND** (#) Number of critical signal phases +++ Third through lane due to parking restrictions during PM peak periods only. Lane not striped, but functions as indicated. RTO Right-turn Overlap Third through lane due to parking restrictions during AM peak periods only, operates as right-turn lane at other times. [a] [b] Third through lane due to parking restrictions during PM peak periods only, operates as right-turn lane at other times.

Restricetd


No right-turn on red

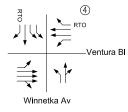
	Existing (2002) Conditions	Cumulative Base & Cumulative Plus Project	Cumulative Plus Project Plus Mitigation
16. Topham St & Victory Bl	Topham St Corbin Av	SAME AS EXISTING	NO IMPACT
17. Corbin Av & Victory Bl	Victory BI Corbin Av	SAME AS EXISTING	NO IMPACT
18. Tampa Av & Victory Bl	Victory BI Tampa Av	SAME AS EXISTING	NO IMPACT
19. Wilbur Av & Victory Bl	Victory BI Wilbur Av	SAME AS EXISTING	NO IMPACT
20. Reseda Bl & Victory Bl	Victory BI Reseda BI	SAME AS EXISTING	NO IMPACT
(#) Number of critical * Lane not striped stricetd No right-turn on	, but functions as indicated.		

Cumulative Base & Cumulative Plus Project Existing (2002) Cumulative Plus Project Plus Mitigation Conditions SAME AS **NO IMPACT** 21. De Soto Av & El Rancho Dr **EXISTING** El Rancho Dr De Soto Av SAME AS 22. De Soto Av & NO IMPACT **EXISTING** Erwin St De Soto Av SAME AS NO IMPACT 23. Winnetka Av & **EXISTING** Calvert St Winnetka Av **NO IMPACT** SAME AS 24. De Soto Av & Oxnard St **EXISTING** Oxnard St De Soto Av **NO IMPACT** SAME AS 25. Winnetka Av & Oxnard St **EXISTING** Oxnard St Winnetka Av **LEGEND** # Number of critical signal phases Lane not striped, but functions as indicated. Traffic signals at Winnetka EB and WB ramps operate collectively as one signal. *** No right-turn on red from 3PM - 7PM RTO Right-turn Overlap

Existing (2002) Conditions

Cumulative Base & Cumulative Plus Project

Cumulative Plus Project Plus Mitigation


31. Winnetka Av & US 101 EB Ramps

SAME AS EXISTING

NO IMPACT

32. Winnetka Av & Ventura Bl

SAME AS EXISTING

NO IMPACT

LEGEND

(#) Number of critical signal phases

** Traffic signals at Winnetka EB and WB ramps operate collectively as one signal.

**** No right-turn on red from 7AM - 9AM

RTO Right-turn Overlap

++++ Right-turn movement for this lane is for carpool only

APPENDIX B AM AND PM PEAK HOUR INTERSECTION TURNING MOVEMENTS

Prepared by:

National Data & Surveying Services

N-S STREET: De Soto Ave DATE: 3/24/2009 LOCATION: City of Canoga Park

E-W STREET: Saticoy St DAY: TUESDAY PROJECT# 09-5108-001

		DT: 100						ACTROL	N.D.		/ECTROL	14.15	
	NC	ORTHBO	UND	SC	DUTHBO	UND	E	ASTBOU	ND	V	/ESTBOL	IND	
LANES:	NL 1	NT 3	NR 0	SL 1	ST 3	SR 0	EL 1	ET 2	ER 0	WL 1	WT 2	WR 0	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM 7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM	16 11 27 28 30 39 14 16	158 157 205 202 251 183 182 147	17 17 22 27 33 38 20 19	17 14 22 29 18 21 17	233 347 343 330 312 344 286 324	22 31 24 36 41 37 28 31	23 35 29 27 31 19 25 27	140 213 231 209 243 151 188 171	14 17 18 24 19 17 17	23 26 34 33 36 27 25 12	169 189 264 256 269 291 200 182	16 15 11 17 18 19 18 17	848 1072 1230 1218 1301 1186 1020 980
9:15 AM 9:30 AM 9:45 AM	NL 101	NT	NR	SL	ST	SR	EL	ET	ER 146	WL	WT	WR	TOTAL
VOLUMES = AM Pea	181 ak Hr Be	1485 egins at:	193 730	152 AM	2519	250	216	1546	146	216	1820	131	8855
PEAK VOLUMES =	124	841	120	90	1329	138	106	834	78	130	1080	65	4935
PEAK HR. FACTOR:		0.864			0.968			0.869			0.946		0.948

Prepared by:

National Data & Surveying Services

N-S STREET: De Soto Ave DATE: 3/24/2009 LOCATION: City of Canoga Park

E-W STREET: Saticoy St DAY: TUESDAY PROJECT# 09-5108-001

	NC	RTHBO	UND	SC	UTHBO	JND	E	ASTBOU	ND	W	ESTBOU	IND	
LANES:	NL 1	NT 3	NR 0	SL 1	ST 3	SR 0	EL 1	ET 2	ER 0	WL 1	WT 2	WR 0	TOTAL
4:00 PM	27	334	33	28	241	36	29	281	13	21	216	23	1282
4:15 PM	29	308	37	30	296	36	39	274	21	23	201	22	1316
4:30 PM	14	298	36	30	227	35	37	308	20	26	212	22	1265
4:45 PM	22	289	23	32	227	31	27	244	18	23	209	32	1177
5:00 PM	18	256	36	28	202	34	41	245	16	26	205	25	1132
5:15 PM	28	264	43	29	223	25	34	256	17	24	212	20	1175
5:30 PM	15	272	23	24	221	19	26	188	17	26	180	17	1028
5:45 PM	15	190	24	21	181	16	31	166	19	30	183	34	910
TOTAL VOLUMES =	NL 168	NT 2211	NR 255	SL 222	ST 1818	SR 232	EL 264	ET 1962	ER 141	WL 199	WT 1618	WR 195	TOTAL 9285

PM Peak Hr Begins at: 400 PM

PEAK														
VOLUMES =	92	1229	129	120	991	138	132	1107	72	93	838	99	5040	l
	-													ı
PEAK HR.														l
														1
FACTOR:		0.920			0.863			0.898			0.975		0.957	ı

Prepared by:

National Data & Surveying Services

N-S STREET: Mason Ave DATE: 3/24/2009 LOCATION: City of Woodland Hills

E-W STREET: Saticoy St DAY: TUESDAY PROJECT# 09-5108-002

	NC	ORTHBO	JND	SC	OUTHBO	UND	E	ASTBOU	ND	W	/ESTBOL	IND	
LANES:	NL 1	NT 2	NR 0	SL 1	ST 2	SR 0	EL 1	ET 2	ER 0	WL 1	WT 2	WR 0	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM 7:00 AM 7:15 AM 7:30 AM	18 20 19	124 155 213	10 12 15	22 25 26	161 267 316	29 23 23	30 34 27	175 197 206	12 15 27	14 31 31	154 205 231	14 18 17	763 1002 1151
7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM	36 22 19 7 5	255 175 155 94 86	37 10 15 13 11	31 28 15 22 26	281 269 269 236 207	27 22 42 31 34	33 20 25 37 37	231 225 243 205 190	30 20 11 18 12	39 20 21 13 18	258 259 229 171 185	25 19 21 14 7	1283 1089 1065 861 818
TOTAL VOLUMES =	NL 146	NT 1257	NR 123	SL 195	ST 2006	SR 231	EL 243	ET 1672	ER 145	WL 187	WT 1692	WR 135	TOTAL 8032
AM Pea	ık Hr Be	gins at:	730	AM									
PEAK VOLUMES =	96	798	77	100	1135	114	105	905	88	111	977	82	4588
PEAK HR. FACTOR:		0.740			0.924			0.934			0.908		0.894

Prepared by:

National Data & Surveying Services

N-S STREET: Mason Ave DATE: 3/24/2009 LOCATION: City of Woodland Hills

E-W STREET: Saticoy St DAY: TUESDAY PROJECT# 09-5108-002

	NC	RTHBO	JND	SC	UTHBO	JND	E	ASTBOU	ND	W	/ESTBOL	IND	
LANES:	NL 1	NT 2	NR 0	SL 1	ST 2	SR 0	EL 1	ET 2	ER 0	WL 1	WT 2	WR 0	TOTAL
4:00 PM	23	220	18	24	188	29	40	221	21	23	214	20	1041
4:15 PM	29	196	19	27	158	34	47	255	27	14	209	34	1049
4:30 PM	27	202	19	25	190	27	42	251	29	16	224	18	1070
4:45 PM	29	199	15	18	171	29	27	259	18	21	209	11	1006
5:00 PM	22	221	18	33	188	25	40	305	28	31	251	22	1184
5:15 PM	21	255	26	32	197	40	50	305	32	21	235	23	1237
5:30 PM	23	212	27	26	203	29	42	224	26	17	188	24	1041
5:45 PM	22	185	17	23	165	42	37	224	19	25	228	22	1009
TOTAL VOLUMES =	NL 196	NT 1690	NR 159	SL 208	ST 1460	SR 255	EL 325	ET 2044	ER 200	WL 168	WT 1758	WR 174	TOTAL 8637

PM Peak Hr Begins at: 430 PM

PEAK													
VOLUMES =	99	877	78	108	746	121	159	1120	107	89	919	74	4497
VOLOTILS -		0,,	, 0	100	, 10	121	133	1120	107	0,5	515	, ,	1157
PEAK HR.													
		0.873			0.906			0.895			0.890		0.909
FACTOR:		0.073			0.900			0.093			0.090		0.909

Prepared by:

National Data & Surveying Services

N-S STREET: Winnetka Ave DATE: 3/24/2009 LOCATION: City of Woodland Hills

E-W STREET: Saticoy St DAY: TUESDAY PROJECT# 09-5108-003

	NC	DTUDO	LIND	CC	NITUDO	LIND		ACTROL	INID	14	/CCTDOL	INID	
	NC	ORTHBO	UND	SC	OUTHBO	UND		ASTBOU	טאו	V۱	/ESTBOL	טאט	
LANES:	NL 1	NT 2	NR 0	SL 1	ST 2	SR 0	EL 1	ET 2	ER 0	WL 1	WT 2	WR 0	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM 7:00 AM 7:15 AM 7:30 AM	13 27 38	125 138 207	19 26 67	27 35 24	220 253 281	20 23 30	22 21 30	145 191 228	24 28 38	12 22 24	140 207 218	21 24 28	788 995 1213
7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM	19 24 23 18 16	186 174 198 181 133	17 16 14 18 7	33 36 30 33 23	248 289 272 231 224	31 34 25 32 24	27 22 28 29 22	180 206 205 199 152	16 24 45 25 13	21 25 22 22 21	213 248 217 163 139	33 29 35 37 29	1024 1127 1114 988 803
TOTAL VOLUMES =	NL 178	NT 1342	NR 184	SL 241	ST 2018	SR 219	EL 201	ET 1506	ER 213	WL 169	WT 1545	WR 236	TOTAL 8052
AM Pea	ak Hr Be	gins at:	730	AM									
PEAK VOLUMES =	104	765	114	123	1090	120	107	819	123	92	896	125	4478
PEAK HR. FACTOR:		0.788			0.928			0.886			0.921		0.923

Prepared by:

National Data & Surveying Services

N-S STREET: Winnetka Ave DATE: 3/24/2009 LOCATION: City of Woodland Hills

E-W STREET: Saticoy St DAY: TUESDAY PROJECT# 09-5108-003

-	NC	RTHBO	JND	SC	UTHBOU	JND	E	ASTBOU	ND	W	ESTBOU	IND	
LANES:	NL 1	NT 2	NR 0	SL 1	ST 2	SR 0	EL 1	ET 2	ER 0	WL 1	WT 2	WR 0	TOTAL
4:00 PM	34	223	17	44	242	40	33	237	37	28	190	33	1158
4:15 PM	32	275	28	44	256	39	31	228	30	18	195	36	1212
4:30 PM	41	280	39	30	243	41	29	230	32	20	205	39	1229
4:45 PM	28	269	33	39	244	32	31	213	21	20	207	40	1177
5:00 PM	36	187	28	42	260	41	39	229	30	22	183	47	1144
5:15 PM	34	242	17	40	257	39	43	254	23	23	201	45	1218
5:30 PM	39	203	32	45	260	35	36	229	28	22	233	55	1217
5:45 PM	31	181	16	29	196	38	22	156	22	17	194	44	946
TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
VOLUMES =	275	1860	210	313	1958	305	264	1776	223	170	1608	339	9301

PM Peak Hr Begins at: 400 PM

PEAK														
VOLUMES =	135	1047	117	157	985	152	124	908	120	86	797	148	4776	I
1020.120	100	10 .,	/	1 -07	300			300			, , ,	1.0	.,,,	
PEAK HR.														
FACTOR:		0.902			0.954			0.938			0.965		0.972	

National Data & Surveying Services

N-S STREET: De Soto DATE: 5/17/2007 LOCATION: City of Woodland Hills

E-W STREET: Sherman Wy DAY: THURSDAY PROJECT# 07-2249-002

	NC	ORTHBOU	JND	SC	OUTHBO	UND	E	ASTBOU	ND	V	/ESTBOL	IND	
LANES:	NL 1	NT 3	NR 0	SL 1	ST 3	SR 0	EL 1	ET 3	ER 0	WL 1	WT 3	WR 0	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM 7:00 AM 7:15 AM 7:30 AM 8:00 AM 8:15 AM 9:00 AM 9:15 AM 9:30 AM 9:15 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:30 AM	13 28 23 14 25 34 26 25	348 196 137 165 153 174 171 193	8 24 16 37 16 19 24 22	30 28 18 25 32 21 28 21	470 332 365 319 280 250 256 255	37 37 37 40 37 23 37	52 9 9 18 13 12 21 11	454 246 170 192 169 241 188 153	25 16 26 15 22 23 17 19	38 37 44 43 29 35 20 42	260 286 259 280 175 171 206 200	30 27 24 23 31 27 13 17	1765 1266 1128 1168 985 1044 993 995
TOTAL VOLUMES =	NL 188	NT 1537	NR 166	SL 203	ST 2527	SR 285	EL 145	ET 1813	ER 163	WL 288	WT 1837	WR 192	TOTAL 9344
AM Pea	ak Hr Be	egins at:	700	AM									
PEAK VOLUMES =	78	846	85	101	1486	148	88	1062	82	162	1085	104	5327
PEAK HR. FACTOR:		0.684			0.808			0.580			0.965		0.755

National Data & Surveying Services

N-S STREET: De Soto DATE: 5/17/2007 LOCATION: City of Woodland Hills

E-W STREET: Sherman Wy DAY: THURSDAY PROJECT# 07-2249-002

	NO	ORTHBO	UND	SC	OUTHBO	JND	E	ASTBOU	ND	W	/ESTBOL	IND	
LANES:	NL 1	NT 3	NR 0	SL 1	ST 3	SR 0	EL 1	ET 3	ER 0	WL 1	WT 3	WR 0	TOTAL
1:00 PM 1:15 PM 1:30 PM 1:45 PM 2:00 PM 2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:15 PM 5:30 PM 6:15 PM 6:30 PM 6:15 PM	25 15 29 25 22 34 30 28	287 337 293 386 403 448 357 342	43 56 58 72 71 66 60 41	19 23 29 26 29 20 24 19	164 211 183 260 195 241 230 250	25 36 29 47 27 33 37 41	27 29 48 51 35 39 42 49	208 247 301 427 454 436 349 366	29 33 31 29 56 33 23 24	23 34 31 46 33 42 35 46	167 236 225 249 241 263 221 223	23 25 28 34 37 26 29 27	1040 1282 1285 1652 1603 1681 1437 1456
TOTAL VOLUMES =	NL 208	NT 2853	NR 467	SL 189	ST 1734	SR 275	EL 320	ET 2788	ER 258	WL 290	WT 1825	WR 229	TOTAL 11436
PM Pea	ak Hr Be	egins at:	445	PM									
PEAK VOLUMES =	111	1594	269	99	926	144	167	1666	141	156	974	126	6373
PEAK HR. FACTOR:		0.901			0.878			0.906			0.949		0.948

Prepared by:

National Data & Surveying Services

N-S STREET: Mason Ave DATE: 3/24/2009 LOCATION: City of Woodland Hills

E-W STREET: Sherman Way DAY: TUESDAY PROJECT# 09-5108-004

	NC	ORTHBO	UND	SC	OUTHBO	UND	Е	ASTBOU	ND	V	/ESTBOL	IND	
LANES:	NL 1	NT 2	NR 0	SL 1	ST 2	SR 0	EL 1	ET 3	ER 0	WL 1	WT 3	WR 0	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM 7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM	5 17 12 16 27 14 11 9	81 111 156 150 120 125 80 71	10 2 10 16 7 9 3 6	28 19 22 29 38 24 13 8	177 261 329 267 227 256 225 203	29 34 41 33 30 35 36 35	13 17 19 18 27 29 23 22	170 230 253 266 225 241 187 203	14 18 16 27 14 12 11 5	21 14 24 29 23 19 15 16	171 255 305 355 286 293 220 248	15 25 23 21 26 22 27 19	734 1003 1210 1227 1050 1079 851 845
9:00 AM 9:15 AM 9:30 AM 9:45 AM TOTAL VOLUMES =	NL 111	NT 894	NR 63	SL 181	ST 1945	SR 273	EL 168	ET 1775	ER 117	WL 161	WT 2133	WR 178	TOTAL 7999
VOLUMES -	111	094	03	101	1943	2/3	100	1775	11/	101	2133	176	7999
AM Pea	ık Hr Be	gins at:	730	АМ									
PEAK VOLUMES =	69	551	42	113	1079	139	93	985	69	95	1239	92	4566
PEAK HR. FACTOR:		0.909			0.849			0.922			0.880		0.930

Prepared by:

National Data & Surveying Services

N-S STREET: Mason Ave DATE: 3/24/2009 LOCATION: City of Woodland Hills

E-W STREET: Sherman Way DAY: TUESDAY PROJECT# 09-5108-004

	NC	RTHBO	UND	SC	UTHBO	JND	E	ASTBOU	ND	W	/ESTBOL	IND	
LANES:	NL 1	NT 2	NR 0	SL 1	ST 2	SR 0	EL 1	ET 3	ER 0	WL 1	WT 3	WR 0	TOTAL
4:00 PM	11	181	6	12	149	25	48	302	13	12	281	22	1062
4:15 PM	19	214	16	28	143	27	41	271	9	8	277	11	1064
4:30 PM	18	201	11	22	127	31	28	286	10	18	273	28	1053
4:45 PM	14	221	23	30	171	34	27	301	9	18	273	25	1146
5:00 PM	21	182	12	20	126	38	42	300	14	17	284	17	1073
5:15 PM	18	254	16	29	171	26	38	321	12	23	240	17	1165
5:30 PM	19	213	10	27	205	37	34	247	20	21	254	25	1112
5:45 PM	24	193	14	28	172	27	31	292	7	10	270	19	1087
TOTAL VOLUMES =	NL 144	NT 1659	NR 108	SL 196	ST 1264	SR 245	EL 289	ET 2320	ER 94	WL 127	WT 2152	WR 164	TOTAL 8762

PM Peak Hr Begins at: 445 PM

PEAK														
VOLUMES =	72	870	61	106	673	135	141	1169	55	79	1051	84	4496	İ
10201120		0,0	0-	-00	0,0	100		1103		' -	1001	٠.	,	i
													1	l
PEAK HR.													1	l
FACTOR:		0.871			0.849			0.920			0.954		0.965	l
17101011		0.07 I		I	0.015			0.520		I	0.551		0.505	ı

Prepared by:

National Data & Surveying Services

N-S STREET: Winnetka Ave DATE: 3/24/2009 LOCATION: City of Woodland Hills

E-W STREET: Sherman Way DAY: TUESDAY PROJECT# 09-5108-005

	NC	ORTHBO	UND	SC	OUTHBO	UND	E	ASTBOL	IND	V	VESTBOL	JND	
LANES:	NL 1	NT 2	NR 0	SL 1	ST 2	SR 0	EL 1	ET 3	ER 0	WL 1	WT 3	WR 0	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM 7:00 AM 7:15 AM 7:30 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM	11 13 26 22 35 38 25 19	115 196 226 153 177 163 159 120	17 25 26 21 16 13 20 8	25 25 29 31 27 29 26 24	250 316 359 263 276 257 250 207	13 26 45 22 22 34 20 21	20 26 54 24 14 20 14	157 209 252 234 211 174 155 126	23 40 41 25 32 20 24 16	26 37 44 35 25 36 24 16	162 249 301 296 258 227 187 165	16 49 86 29 23 21 22 22	835 1211 1489 1155 1116 1032 926 755
TOTAL VOLUMES =	NL 189	NT 1309	NR 146	SL 216	ST 2178	SR 203	EL 183	ET 1518	ER 221	WL 243	WT 1845	WR 268	TOTAL 8519
	ık Hr Be	gins at:	715	AM									
PEAK VOLUMES =	96	752	88	112	1214	115	118	906	138	141	1104	187	4971

0.832

0.837

0.831

CONTROL: Signalized

0.842

PEAK HR.

FACTOR:

Prepared by:

National Data & Surveying Services

N-S STREET: Winnetka Ave DATE: 3/24/2009 LOCATION: City of Woodland Hills

E-W STREET: Sherman Way DAY: TUESDAY PROJECT# 09-5108-005

	NC	RTHBO	JND	SC	UTHBO	JND	Е	ASTBOU	ND	W	'ESTBOL	IND	
LANES:	NL 1	NT 2	NR 0	SL 1	ST 2	SR 0	EL 1	ET 3	ER 0	WL 1	WT 3	WR 0	TOTAL
4:00 PM	49	250	28	43	216	35	30	246	26	12	207	30	1172
4:15 PM	45	275	19	43	189	41	43	278	19	20	254	32	1258
4:30 PM	32	298	25	45	235	38	38	241	34	25	246	48	1305
4:45 PM	37	283	22	42	202	31	29	255	27	25	197	26	1176
5:00 PM	44	232	25	39	265	37	35	255	19	16	214	41	1222
5:15 PM	30	283	24	46	247	36	43	219	19	17	216	29	1209
5:30 PM	38	230	21	47	251	22	38	213	23	20	210	24	1137
5:45 PM	32	178	16	24	136	21	28	173	18	14	170	25	835
TOTAL VOLUMES =	NL 307	NT 2029	NR 180	SL 329	ST 1741	SR 261	EL 284	ET 1880	ER 185	WL 149	WT 1714	WR 255	TOTAL 9314

PM Peak Hr Begins at: 415 PM

PEAK														
VOLUMES =	158	1088	91	169	891	147	145	1029	99	86	911	147	4961	l
10201120	100	1000	7_	-03	031	- ''		1023			7	,	1301	ı
														l
PEAK HR.														ı
FACTOR:		0.942			0.885			0.936			0.897		0.950	l
														4

National Data & Surveying Services

N-S STREET: De Soto Ave DATE: 5/17/2007 LOCATION: City of Woodland Hills

E-W STREET: Vanowen St DAY: THURSDAY PROJECT# 07-2249-005

	N	ORTHBOU	IND	SC	OUTHBO	LIND	F	ASTBOU	ND	١٨	/ESTBOL	IND	
LANES:	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
6:00 AM													
6:15 AM													
6:30 AM													
6:45 AM	4.1	145	15	27	225	25	20	120	10	22	156	20	052
7:00 AM 7:15 AM	11 10	145 188	15 12	27 24	225 290	35 33	30 22	130 124	18 20	32 30	156 186	28 21	852 960
7:30 AM	11	205	20	2 4 25	304	50	21	201	21	40	224	30	1152
7:45 AM	12	242	25	25	311	44	15	240	15	45	320	25	1319
8:00 AM	13	224	27	35	265	30	15	256	16	54	275	22	1232
8:15 AM	10	156	26	30	311	45	20	225	15	55	224	30	1147
8:30 AM	15	157	18	20	288	40	21	188	7	60	286	25	1125
8:45 AM	10	166	15	25	298	60	25	166	9	56	251	20	1101
9:00 AM													
9:15 AM													
9:30 AM													
9:45 AM													
10:00 AM													
10:15 AM													
10:30 AM 10:45 AM													
11:00 AM													
11:15 AM													
11:30 AM													
11:45 AM													
TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
VOLUMES =	92	1483	158	211	2292	337	169	1530	121	372	1922	201	8888
	l		ļ							I		ļ	ı
AM Pea	ak Hr Be	egins at:	730	AM									
PEAK VOLUMES =	46	827	98	115	1191	169	71	922	67	194	1043	107	4850
PEAK HR. FACTOR:		0.870			0.955			0.923			0.862		0.919

CONTROL:

National Data & Surveying Services

N-S STREET: De Soto Ave DATE: 5/17/2007 LOCATION: City of Woodland Hills

E-W STREET: Vanowen St DAY: THURSDAY PROJECT# 07-2249-005

-	NO	ORTHBO	UND	SC	OUTHBO	JND	E	ASTBOU	ND	W	/ESTBOL	IND	
LANES:	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
1:00 PM 1:15 PM 1:30 PM 1:45 PM 2:00 PM 2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 4:15 PM 4:30 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM 6:30 PM 6:15 PM 6:30 PM	11 10 12 13 10 8 15 16	334 288 334 378 368 366 384 356	28 30 28 26 25 30 30 29	25 30 25 18 25 20 32 30	221 189 221 240 201 199 245 230	31 28 32 30 42 40 60 56	40 45 30 35 50 40 33 38	266 245 254 288 345 354 305 311	20 40 22 21 18 25 24 23	20 27 25 33 24 25 22 30	188 160 186 221 196 201 224 230	31 28 40 35 30 42 40 20	1215 1120 1209 1338 1334 1350 1414 1369
TOTAL VOLUMES =	NL 95	NT 2808	NR 226	SL 205	ST 1746	SR 319	EL 311	ET 2368	ER 193	WL 206	WT 1606	WR 266	TOTAL 10349
PM Pea	ık Hr Be	egins at:	500	PM									
PEAK VOLUMES =	49	1474	114	107	875	198	161	1315	90	101	851	132	5467
PEAK HR. FACTOR:		0.954			0.875			0.934			0.948		0.967

CONTROL:

Prepared by:

National Data & Surveying Services

N-S STREET: Mason Ave DATE: 3/24/2009 LOCATION: City of Woodland Hills

E-W STREET: Vanowen St DAY: TUESDAY PROJECT# 09-5108-006

	NC	ORTHBO	UND	SC	OUTHBO	UND	E	ASTBOU	ND	V	/ESTBOL	IND	
LANES:	NL 1	NT 2	NR 0	SL 1	ST 2	SR 0	EL 1	ET 2	ER 0	WL 1	WT 2	WR 0	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM													
7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM	3 6 5 7 9 8 8 10	47 57 85 100 87 83 45 45	5 10 11 16 7 11 5 9	20 20 18 22 18 27 14 7	137 193 271 303 203 214 159 155	32 46 43 48 49 54 56 65	16 25 37 34 26 24 16 23	168 175 227 241 204 221 192 179	5 15 28 38 8 4 19 23	12 19 41 54 33 22 10 16	154 207 251 289 247 263 243 203	19 24 21 32 22 15 11	618 797 1038 1184 913 946 778 747
TOTAL VOLUMES =	NL 56	NT 549	NR 74	SL 146	ST 1635	SR 393	EL 201	ET 1607	ER 140	WL 207	WT 1857	WR 156	TOTAL 7021
AM Pea	ık Hr Be	egins at:	730	AM									
PEAK VOLUMES =	29	355	45	85	991	194	121	893	78	150	1050	90	4081
PEAK HR. FACTOR:		0.872			0.851			0.872			0.860		0.862

Prepared by:

National Data & Surveying Services

N-S STREET: Mason Ave DATE: 3/24/2009 LOCATION: City of Woodland Hills

E-W STREET: Vanowen St DAY: TUESDAY PROJECT# 09-5108-006

	NC	ORTHBOU	JND	SC	UTHBO	UND	E	ASTBOU	ND	V	/ESTBOL	IND	
LANES:	NL 1	NT 2	NR 0	SL 1	ST 2	SR 0	EL 1	ET 2	ER 0	WL 1	WT 2	WR 0	TOTAL
4:00 PM	12	146	6	31	78	32	49	262	7	15	206	15	859
4:15 PM	12	147	13	31	89	43	44	303	10	17	200	19	928
4:30 PM	11	140	5	20	74	32	46	263	6	8	194	24	823
4:45 PM	13	145	16	13	115	34	64	269	4	7	205	22	907
5:00 PM	8	152	7	21	106	28	49	293	16	6	210	22	918
5:15 PM	10	181	12	30	132	32	59	300	16	14	211	27	1024
5:30 PM	8	174	11	23	144	36	45	280	14	15	231	17	998
5:45 PM	9	151	12	19	138	34	49	257	16	17	227	17	946
TOTAL VOLUMES =	NL 83	NT 1236	NR 82	SL 188	ST 876	SR 271	EL 405	ET 2227	ER 89	WL 99	WT 1684	WR 163	TOTAL 7403

PM Peak Hr Begins at: 500 PM

PEAK														
VOLUMES =	35	658	42	93	520	130	202	1130	62	52	879	83	3886	I
					0_0				-	-	0.5			
PEAK HR.														ı
FACTOR:		0.905			0.915			0.929			0.964		0.949	

Prepared by:

National Data & Surveying Services

N-S STREET: Winnetka Ave DATE: 3/24/2009 LOCATION: City of Woodland Hills

E-W STREET: Vanowen St DAY: TUESDAY PROJECT# 09-5108-007

	NC	ORTHBO	IND	C C	OUTHBO	IND		ASTBOU	ND	14	/ESTBOL	IND	
LANES:	NL 1	NT 2	NR 0	SL 1	ST 2	SR 0	EL 1	ET 2	ER 0	WL 1	WT 2	WR 0	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM 7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM	10 13 16 31 25 14 17 18	106 145 143 175 170 164 115 140	13 19 15 21 35 26 13 12	18 27 26 31 27 24 22 32	242 267 359 260 285 280 275 240	17 19 33 31 33 36 27 22	14 17 23 20 9 13 19 14	144 171 191 198 178 209 176 174	21 21 22 26 15 18 22 28	24 29 26 18 33 36 36 29	156 212 246 278 215 238 184 218	18 30 37 18 20 17 12	783 970 1137 1107 1045 1075 918 938
TOTAL VOLUMES =	NL 144	NT 1158	NR 154	SL 207	ST 2208	SR 218	EL 129	ET 1441	ER 173	WL 231	WT 1747	WR 163	TOTAL 7973
AM Pea	ak Hr Be	gins at:	730	АМ									
PEAK VOLUMES = PEAK HR.	86	652	97	108	1184	133	65	776	81	113	977	92	4364
FACTOR:		0.908			0.852			0.945			0.941		0.960

Prepared by:

National Data & Surveying Services

N-S STREET: Winnetka Ave DATE: 3/24/2009 LOCATION: City of Woodland Hills

E-W STREET: Vanowen St DAY: TUESDAY PROJECT# 09-5108-007

	NC	RTHBO	UND	SC	UTHBOU	JND	E	ASTBOU	ND	W	ESTBOU	IND	
LANES:	NL 1	NT 2	NR 0	SL 1	ST 2	SR 0	EL 1	ET 2	ER 0	WL 1	WT 2	WR 0	TOTAL
4:00 PM	25	306	25	27	207	20	31	231	14	16	183	28	1113
4:15 PM	25	286	19	26	184	18	32	230	18	20	178	26	1062
4:30 PM	23	291	20	29	238	24	30	224	25	18	182	27	1131
4:45 PM	20	231	15	23	182	17	32	227	24	23	179	26	999
5:00 PM	24	268	23	23	188	14	22	238	20	19	207	31	1077
5:15 PM	21	276	21	37	210	23	35	289	15	18	224	36	1205
5:30 PM	25	273	24	27	213	24	26	246	18	24	199	19	1118
5:45 PM	22	264	27	30	242	28	31	258	26	25	257	22	1232
TOTAL VOLUMES =	NL 185	NT 2195	NR 174	SL 222	ST 1664	SR 168	EL 239	ET 1943	ER 160	WL 163	WT 1609	WR 215	TOTAL 8937

PM Peak Hr Begins at: 500 PM

PEAK														
VOLUMES =	92	1081	95	117	853	89	114	1031	79	86	887	108	4632	İ
10201120		1001	,,,		000	03		1001	, ,		00,	100	.002	l
														i
PEAK HR.														l
FACTOR:		0.984			0.883			0.903			0.889		0.940	l
					0.000			0.500			0.000		0.0	1

National Data & Surveying Services

N-S STREET: Shoup Ave DATE: 5/22/2007 LOCATION: City of Woodland Hills

E-W STREET: Victory Blvd DAY: TUESDAY PROJECT# 07-2249-007

	NC	ORTHBOU	JND	SC	OUTHBOU	JND	E	ASTBOU	IND	W	/ESTBOL	IND	
LANES:	NL 1	NT 2	NR 0	SL 1	ST 2	SR 0	EL 1	ET 2	ER 0	WL 1	WT 2	WR 0	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM 7:00 AM 7:15 AM 7:30 AM 8:00 AM 8:15 AM 8:30 AM 9:00 AM 9:15 AM 9:30 AM 9:45 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:30 AM	8 12 21 26 29 21 20 31	112 136 155 200 194 141 141 153	12 12 15 5 17 9 17 16	23 30 27 35 34 29 30 27	217 234 303 322 329 291 251 226	12 14 24 15 15 17 20 16	11 15 20 33 21 21 17 14	123 134 224 212 252 187 176 164	32 36 40 82 72 61 47 59	17 26 23 25 25 26 32 35	102 112 196 195 164 153 112 124	11 11 18 21 25 13 13 15	680 772 1066 1171 1177 969 876 880
TOTAL VOLUMES =	NL 168	NT 1232	NR 103	SL 235	ST 2173	SR 133	EL 152	ET 1472	ER 429	WL 209	WT 1158	WR 127	TOTAL 7591
AM Pea	ak Hr Be	egins at:	730	AM									
PEAK VOLUMES =	97	690	46	125	1245	71	95	875	255	99	708	77	4383
PEAK HR. FACTOR:		0.868			0.953			0.888			0.917		0.931

National Data & Surveying Services

N-S STREET: Shoup Ave DATE: 5/22/2007 LOCATION: City of Woodland Hills

DAY: TUESDAY E-W STREET: Victory Blvd PROJECT# 07-2249-007

	NO	ORTHBO	UND	SC	OUTHBOU	JND	E	ASTBOU	ND	W	/ESTBOL	IND	
LANES:	NL 1	NT 2	NR 0	SL 1	ST 2	SR 0	EL 1	ET 2	ER 0	WL 1	WT 2	WR 0	TOTAL
1:00 PM 1:15 PM 1:30 PM 1:45 PM 2:00 PM 2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 4:15 PM 4:30 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:15 PM 6:30 PM 6:15 PM 6:30 PM	50 50 62 46 45 47 49 42	260 262 312 297 338 370 327 285	27 22 33 23 28 31 25 20	24 20 10 32 23 21 28 27	143 139 136 156 167 192 174 133	32 37 22 16 27 26 20 15	31 30 35 20 34 19 25 26	221 186 151 195 189 218 209 184	39 21 36 38 29 28 29 40	21 24 14 19 26 23 20 17	205 240 228 205 234 227 202 205	45 37 40 35 40 40 39 31	1098 1068 1079 1082 1180 1242 1147 1025
TOTAL VOLUMES =	NL 391	NT 2451	NR 209	SL 185	ST 1240	SR 195	EL 220	ET 1553	ER 260	WL 164	WT 1746	WR 307	TOTAL 8921
	ak Hr Be	egins at:	445	PM									·
PEAK VOLUMES =	187	1332	107	104	689	89	98	811	124	88	868	154	4651
PEAK HR. FACTOR:		0.907			0.923			0.975			0.925		0.936

CLIENT: CRAIN AND ASSOCIATES
PROJECT: WESTFIELD WEST VALLEY II
DATE: THURSDAY, MAY 24, 2007
PERIOD: 07:00 AM TO 09:00 AM

INTERSECTION: N/S TOPANGA CANYON BOULEVARD

E/W VICTORY BOULEVARD

FILE NUMBER: 18-AM CAR

											-		1
15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
700-715	15		42	16	104	30	26	168	10	13	157	17	
715-730	17		37	15	121	43	39	202	17	21	173	20	
730-745	22	359	52	20	148	63	38	221	19	25	200	21	
745-800	24	330	43	30	169	48	58	201	24	29	237	14	
800-815	17	311	30	26	149	46	46	188	25	32	246	18	
815-830	25	348	36	33	180	55	46	195	30	26	214	14	
830-845	29	317	43	20	131	43	45	186	36	24	243	15	
845-900	29	324	52	33	156	63	52	214	34	32	215	16	
1								,			1		Ī
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
700-800	78	1345	174	81	542	184	161	792	70	88	767	72	4354
715-815	80	1336	162	91	587	200	181	812	85	107	856	73	4570
730-830	88	1348	161	109	646	212	188	805	98	112	897	67	4731
745-845	95	1306	152	109	629	192	195	770	115	111	940	61	4675
800-900	100	1300	161	112	616	207	189	783	125	114	918	63	4688
A.M. PEAK H	HOUR				100	1300	161						
0800-090	00												
							_						
					,	•	,						
			63		-			1		112			
			918		_					616			
VICTORY	BOULEVA	RD						`	•				
			114					_		207			
				1	,				•				
				•		_		`	•				
					7-7	Ī							
					125	783	189						

TOPANGA CANYON BOULEVARD

CLIENT: CRAIN AND ASSOCIATES
PROJECT: WESTFIELD WEST VALLEY II
DATE: THURSDAY, MAY 24, 2007
PERIOD: 04:00 PM TO 06:00 PM

INTERSECTION: N/S TOPANGA CANYON BOULEVARD

E/W VICTORY BOULEVARD

FILE NUMBER: 18-PM

			1	Ī		Ī					Ī		Ī
15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
100 115	07	004	50	05	100	70	70	000	0.4		100	00	
400-415	37		59	65	196	79	72	360	34	51	192	39	
415-430	36	236	41	54	191	64	81	325	45	49	219	40	
430-445	29	242	48	45	201	71	98	352	45	51	205	40	
445-500	39	250	74	78	229	85	99	369	42	49	204	38	
500-515	21	288	47	44	203	70	83	399	34	33	196	37	
515-530	27	250	44	60	210	64	78	361	42	37	223	36	
530-545	26	257	69	38	198	65	91	399	56	33	191	35	
545-600	30	237	58	65	243	85	69	349	36	36	208	45	
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	о WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
TOTALS	SDNI	ЗВІП	SDLI	WDNI	WDIN	WDLI	INDILI	NDIH	INDLI	EDNI	EDIH	EDLI	TOTALS
400-500	141	989	222	242	817	299	350	1406	166	200	820	157	5809
415-515	125	1016	210	221	824	290	361	1445	166	182	824	155	5819
430-530	116	1030	213	227	843	290	358	1481	163	170	828	151	5870
445-545	113	1045	234	220	840	284	351	1528	174	152	814	146	5901
500-600	104	1032	218	207	854	284	321	1508	168	139	818	153	5806
000 000		.002		_0.		_0.	02.	.000		.00	0.0	.00	0000
P.M. PEAK I	HOUR				113	1045	234						
0445-05					-	1	-						
					. •	+	, '	→ ,					
			146	1	\			1	L	220			
			•										
			814	_					4	840			
VICTORY	BOULEVA	RD	•		•			•					
			152							284			
			-		,			lacksquare	,				
				•		A		'	•				
						Ţ		~					
					174	1528	351						

TOPANGA CANYON BOULEVARD

THE TRAFFIC SOLUTION 329 DIAMOND STREET ARCADIA, CALIFORNIA 91006 626.446.7978

CLIENT: CRAIN AND ASSOCIATES
PROJECT: WESTFIELD WEST VALLEY II
DATE: THURSDAY, MAY 24, 2007
PERIOD: 07:00 AM TO 09:00 AM
INTERSECTION: N/S CANOGA AVENUE

E/W VICTORY BOULEVARD

FILE NUMBER: 21-AM CAR

	1												i
15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
700-715	12	228	8	10	158	47	15	177	7	15	172	10	
715-730	13	239	12	17	186	53	14	203	10	20	168	12	
730-745	14	243	12	19	211	69	16	195	15	26	188	17	
745-800	19	257	20	17	251	65	20	213	16	24	206	12	
800-815	21	246	37	13	245	50	25	192	13	39	231	22	
815-830	16	273	35	16	225	48	24	201	19	39	198	18	
830-845	19	294	36	15	223	52	23	173	29	32	201	25	
845-900	20	241	25	24	223	46	35	166	19	29	199	16	
													1
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
700-800	58	967	52	63	806	234	65	788	48	85	734	51	3951
715-815	67	985	81	66	893	237	75	803	54	109	793	63	4226
730-830	70	1019	104	65	932	232	85	801	63	128	823	69	4391
745-845	75	1070	128	61	944	215	92	779	77	134	836	77	4488
800-900	76	1054	133	68	916	196	107	732	80	139	829	81	4411
A.M. PEAK I 0745-084					75	1070	128						
			77 .	1	•			1		61			
VICTORY	BOULEVA	RD	836		•			•	•	944			
			134 _		,			1	,	215			
					77	779	92	-					

CANOGA AVENUE

CLIENT: CRAIN AND ASSOCIATES
PROJECT: WESTFIELD WEST VALLEY II
DATE: THURSDAY, MAY 24, 2007
PERIOD: 04:00 PM TO 06:00 PM
INTERSECTION: N/S CANOGA AVENUE

E/W VICTORY BOULEVARD

FILE NUMBER: 21-PM

													_
15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
400-415	35	193	24	45	256	50	80	301	53	59	289	38	
415-430	35	211	20	37	244	57	68	278	37	41	301	26	
430-445	33	200	24	54	272	46	87	355	32	42	274	28	
445-500	27	227	36	45	233	56	77	344	38	47	316	37	
500-515	39	196	34	43	278	46	94	361	48	36	314	30	
515-530	30	239	27	54	271	42	81	347	42	35	303	27	
530-545	29	223	21	56	278	64	73	308	37	35	287	24	
545-600	27	256	30	42	255	51	74	342	46	47	272	35	
													_
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
400-500	130	831	104	181	1005	209	312	1278	160	189	1180	129	5708
415-515	134	834	114	179	1027	205	326	1338	155	166	1205	121	5804
430-530	129	862	121	196	1054	190	339	1407	160	160	1207	122	5947
445-545	125	885	118	198	1060	208	325	1360	165	153	1220	118	5935
500-600	125	914	112	195	1082	203	322	1358	173	153	1176	116	5929
P.M. PEAK I	HOUR				129	862	121						
0430-05	30												
					•		_	-					
				_	`	•	,						
			122					1		196			
			1207							1054			
VICTORY	BOULEVA	RD							•				
			160							190			
				4	7				7				
				·	•	•	١,	→ `	,				
					,			•					
					160	1407	339						

CANOGA AVENUE

National Data & Surveying Services

N-S STREET: De Soto Ave DATE: 5/17/2007 LOCATION: City of Woodland Hills

E-W STREET: Victory Blvd DAY: THURSDAY PROJECT# 07-2249-008

	NC	ORTHBO	UND	SC	OUTHBO	UND	E	ASTBOU	ND	W	/ESTBOL	JND	
LANES:	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM 7:00 AM 7:15 AM 7:30 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 9:45 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:30 AM	11 10 13 15 20 11 15 15	160 156 211 201 160 156 142 156	20 25 40 42 25 30 24 29	31 30 25 20 18 15 16 15	201 331 320 325 311 305 321 288	35 35 33 42 55 40 45 40	15 20 15 17 18 20 21 25	145 120 186 242 260 256 225 160	8 6 7 11 15 13 10 8	112 120 125 130 105 112 130 108	256 245 302 320 344 305 331 277	40 33 35 20 21 18 15 18	1034 1131 1312 1385 1352 1281 1295 1139
TOTAL VOLUMES =	NL 110	NT 1342	NR 235	SL 170	ST 2402	SR 325	EL 151	ET 1594	ER 78	WL 942	WT 2380	WR 200	TOTAL 9929
AM Pea	ak Hr Be	egins at:	730	AM									
PEAK VOLUMES =	59	728	137	78	1261	170	70	944	46	472	1271	94	5330
PEAK HR. FACTOR:		0.875			0.975			0.904			0.977		0.962

CONTROL:

National Data & Surveying Services

N-S STREET: De Soto Ave DATE: 5/17/2007 LOCATION: City of Woodland Hills

E-W STREET: Victory Blvd DAY: THURSDAY PROJECT# 07-2249-008

	NO	ORTHBO	UND	SC	OUTHBO	JND	E	ASTBOU	ND	V	/ESTBOL	IND	
LANES:	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
1:00 PM 1:15 PM 1:30 PM 1:45 PM 2:00 PM 2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 4:45 PM 4:30 PM 4:30 PM 4:15 PM 5:00 PM 5:15 PM 5:00 PM 5:15 PM 5:30 PM 6:30 PM 6:45 PM	22 25 21 15 16 18 17 21	261 277 275 254 287 288 301 256	90 99 90 98 100 105 112 89	18 24 30 25 22 30 25 20	188 178 160 199 211 186 190 178	45 50 35 33 50 45 44 50	90 88 86 90 100 105 112 89	401 388 356 423 442 456 404 388	30 33 32 40 22 28 30 35	71 67 60 55 40 65 60 56	255 260 267 288 224 256 245 299	21 40 34 33 30 23 24 20	1492 1529 1446 1553 1544 1605 1564 1501
TOTAL VOLUMES =	NL 155	NT 2199	NR 783	SL 194	ST 1490	SR 352	EL 760	ET 3258	ER 250	WL 474	WT 2094	WR 225	TOTAL 12234
PM Pea	ık Hr Be	egins at:	445	PM									
PEAK VOLUMES =	66	1130	415	102	786	172	407	1725	120	220	1013	110	6266
PEAK HR. FACTOR:		0.937			0.936			0.956			0.893		0.976

CONTROL:

Phone: (626) 564-1944 Fax: (626) 564-0969

1246

100

109

213

MASON AVE

INTERSECTION TURNING MOVEMENT COUNT SUMMARY

CLIENT: FEHR AND PEERS

PROJECT: WEST SAN FERNANDO VALLEY TRAFFIC COUNTS

DATE: WEDNESDAY OCTOBER 17,2007

PERIODS: 7:00 AM TO 9:00 AM AND 4:00 PM TO 6:00 PM

MASON AVE INTERSECTION: N/S

> E/W VICTORY BLVD

CITY: WOODLAND HILLS

15 MIN COUNTS					•	7:00 AM T	9:00 AM													
	1	2	3	4	5	6	7	8	9	10	11	12								
PERIOD	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTAL	AM PEAK HOU	JR			^		
700-715	141	22	60	16	231	2	0	5	0	17	282	25	801	745-845			_	L	141	
715-730	163	40	99	19	299	15	1	5	1	25	330	19	1016							
730-745	160	111	93	24	349	16	6	11	7	55	372	20	1224		819 329	317		←—	1712	4
745-800	253	139	124	42	417	34	9	29	25	98	424	53	1647							1
800-815	171	88	74	33	366	27	7	20	16	55	428	75	1360	-	$egin{pmatrix} \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow $	\vdash		J	91	
815-830	186	58	60	23	453	12	2	19	14	41	440	35	1343					Y		de
830-845	209	44	59	43	476	18	8	10	21	37	415	31	1371		^					JN
845-900	170	54	51	43	441	8	6	23	17	34	355	33	1235		194		 ←	1	\rightarrow	
HOUR TOTALS																				•
	1	2	3	4	5	6	7	8	9	10	11	12		VICTORY BLVD	1707		76	78	26	
TIME	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTAL							
700-800	717	312	376	101	1296	67	16	50	33	195	1408	117	4688		231					
715-815	747	378	390	118	1431	92	23	65	49	233	1554	167	5247		\			MASON	AVE	
730-830	770	396	351	122	1585	89	24	79	62	249	1664	183	5574				-			
745-845	819	329	317	141	1712	91	26	78	76	231	1707	194	5721							
800-900	736	244	244	142	1736	65	23	72	68	167	1638	174	5309							

15 MIN COUNTS						4:00 PM T	O 6:00 PN	1									
	1	2	3	4	5	6	7	8	9	10	11	12					
PERIOD	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTAL	PM PEAK HO	UR		
400-415	63	18	42	59	251	4	26	59	32	25	448	81	1108	500-600			
415-430	44	13	32	49	251	3	20	48	18	16	450	74	1018	·			
430-445	62	19	35	45	263	6	15	54	18	15	457	79	1068		228	157	152
445-500	43	23	31	44	253	12	21	32	21	13	499	119	1111				
500-515	53	22	38	49	268	5	16	40	24	20	467	100	1102		\leftarrow	\downarrow	\vdash
515-530	62	37	37	54	321	13	28	50	31	30	578	128	1369	_			
530-545	54	41	39	54	309	15	26	58	25	42	480	105	1248			^	
545-600	59	57	38	55	348	14	30	65	29	45	533	139	1412		472		
HOUR TOTALS																	
	1	2	3	4	5	6	7	8	9	10	11	12		VICTORY BLVD	2058	→	
TIME	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTAL				
400-500	212	73	140	197	1018	25	82	193	89	69	1854	353	4305		137		
415-515	202	77	136	187	1035	26	72	174	81	64	1873	372	4299			₩	
430-530	220	101	141	192	1105	36	80	176	94	78	2001	426	4650				•
445-545	212	123	145	201	1151	45	91	180	101	105	2024	452	4830				
500-600	228	157	152	212	1246	47	100	213	109	137	2058	472	5131				
	-				-							J.					

Prepared by:

National Data & Surveying Services

N-S STREET: Winnetka Ave DATE: 3/24/2009 LOCATION: City of Woodland Hills

E-W STREET: Victory Blvd DAY: TUESDAY PROJECT# 09-5108-008

	NC	ORTHBO	UND	SC	OUTHBO	UND	E	ASTBOL	JND	V	VESTBOL	JND	
LANES:	NL 1	NT 2	NR 0	SL 1	ST 2.5	SR .5	EL 1	ET 3	ER 0	WL 1	WT 3	WR 0	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM													
7:00 AM 7:15 AM 7:30 AM	16 23 25	92 150 187	19 38 54	23 33 40	235 271 275	23 43 43	8 9 7	170 284 233	35 42 64	33 25 117	158 297 411	35 8 10	847 1223 1466
7:45 AM 8:00 AM 8:15 AM	25 49 22	194 233 171	41 53 40	56 57 64	273 273 243 244	75 62 45	16 18 19	340 297 320	59 57 46	90 51 54	437 333 274	15 27 14	1621 1480 1313
8:30 AM 8:45 AM	24 25	146 124	43 18	38 38	202 241	50 41	8 15	262 220	37 32	44 36	297 279	15 14	1166 1083
9:00 AM 9:15 AM 9:30 AM 9:45 AM													
TOTAL VOLUMES =	NL 209	NT 1297	NR 306	SL 349	ST 1984	SR 382	EL 100	ET 2126	ER 372	WL 450	WT 2486	WR 138	TOTAL 10199
AM Pea	ak Hr Be	gins at:	730	AM									
PEAK VOLUMES =	121	785	188	217	1035	225	60	1190	226	312	1455	66	5880
PEAK HR. FACTOR:		0.816			0.914			0.889			0.845		0.907

Prepared by:

National Data & Surveying Services

N-S STREET: Winnetka Ave DATE: 3/24/2009 LOCATION: City of Woodland Hills

E-W STREET: Victory Blvd DAY: TUESDAY PROJECT# 09-5108-008

-	NC	ORTHBO	JND	SOUTHBOUND			E	ASTBOU	ND	W	IND		
LANES:	NL 1	NT 2	NR 0	SL 1	ST 2.5	SR .5	EL 1	ET 3	ER 0	WL 1	WT 3	WR 0	TOTAL
4:00 PM	40	260	28	41	189	27	63	359	37	27	255	30	1356
4:15 PM	23	229	23	33	154	33	67	414	38	38	285	34	1371
4:30 PM	38	244	35	34	194	29	60	357	46	24	284	37	1382
4:45 PM	36	242	38	46	188	30	56	366	50	25	334	36	1447
5:00 PM	42	251	37	51	205	29	45	338	41	41	277	30	1387
5:15 PM	47	225	31	41	167	37	43	315	66	39	303	41	1355
5:30 PM	48	238	40	36	195	55	59	281	66	42	286	23	1369
5:45 PM	48	193	26	30	159	65	42	234	58	59	306	21	1241
TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
VOLUMES =	322	1882	258	312	1451	305	435	2664	402	295	2330	252	10908

PM Peak Hr Begins at: 415 PM

87
"
965

Prepared by: National Data & Surveying Services

N-S STREET: Topham St DATE: 9/15/2009 LOCATION: City of Woodland Hills

E-W STREET: Victory Blvd DAY: TUESDAY PROJECT# 09-5290-001

	NC	ORTHBOU	JND	SO	DUTHBOU	JND	E	ASTBOU	IND	V	VESTBOU	IND	
LANES:	NL 1	NT 0	NR 1	SL 0	ST 0	SR 0	EL 0	ET 2	ER 1	WL 0	WT 2	WR 0	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM 7:00 AM 7:15 AM 7:30 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 10:15 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:30 AM	27 53 84 121 106 47 37 43		0 1 0 1 3 1 6 0					351 337 270 301 258 308 211 241	59 96 103 128 101 92 55 61		234 399 483 531 469 416 303 332		671 886 940 1082 937 864 612 677
TOTAL VOLUMES =	NL 518	NT 0 egins at:	NR 12 715	SL 0	ST 0	SR 0	EL 0	ET 2277	ER 695	WL 0	WT 3167	WR 0	TOTAL 6669
	ak III De	yiiis at.	/13	VI.I									
PEAK VOLUMES =	364	0	5	0	0	0	0	1166	428	0	1882	0	3845
PEAK HR. FACTOR:		0.756			0.000			0.920			0.886		0.888

Prepared by: National Data & Surveying Services

N-S STREET: Topham St DATE: 9/15/2009 LOCATION: City of Woodland Hills

E-W STREET: Victory Blvd DAY: TUESDAY PROJECT# 09-5290-001

	NC	RTHBOU	JND	SC	OUTHBOL	JND	E	ASTBOU	IND	V	VESTBOL	IND	
LANES:	NL 1	NT 0	NR 1	SL 0	ST 0	SR 0	EL 0	ET 2	ER 1	WL 0	WT 2	WR 0	TOTAL
1:00 PM 1:15 PM 1:30 PM 1:45 PM 2:00 PM 2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 4:45 PM 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:00 PM 5:15 PM 5:30 PM 6:15 PM 6:30 PM 6:45 PM	47 50 51 48 64 82 89 65		2 0 4 1 1 2 1 2					349 395 324 358 402 387 389 384	61 89 69 69 80 86 84 87		244 245 229 274 278 300 348 365		703 779 677 750 825 857 911 903
TOTAL VOLUMES =	NL 496	NT 0	NR 13	SL 0	ST 0	SR 0	EL 0	ET 2988	ER 625	WL 0	WT 2283	WR 0	TOTAL 6405
PM Pea	ak Hr Be	gins at:	500	PM									
PEAK VOLUMES =	300	0	6	0	0	0	0	1562	337	0	1291	0	3496
PEAK HR. FACTOR:		0.850			0.000			0.985			0.884		0.959

Prepared by:

National Data & Surveying Services

N-S STREET: Corbin Ave DATE: 3/24/2009 LOCATION: City of Woodland Hills

E-W STREET: Victory Blvd DAY: TUESDAY PROJECT# 09-5108-009

	N/C	DELIDO	IND		NITUDO	LIND		ACTROLI	ND	14	/ECTDO!	IND	
	INC	ORTHBO	טאט	SC	OUTHBO	UND		ASTBOU	ND	V\	/ESTBOL	טאט	
LANES:	NL 1	NT 2	NR 0	SL 1	ST 2	SR 0	EL 1	ET 2	ER 0	WL 1	WT 2	WR 0	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM 7:00 AM 7:15 AM 7:30 AM 7:45 AM	3 3 10 10	35 87 160 126	19 18 21 24	50 52 41 41	122 183 209 221	39 64 64 93	10 12 14 14	179 230 252 249	3 2 1 5	14 23 60 43	190 299 459 446	26 39 30 31	690 1012 1321 1303
8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 9:45 AM	13 2 7 5	171 132 101 63	24 21 11 11	38 43 58 40	179 175 179 158	82 70 44 54	27 38 23 16	236 250 239 176	6 3 4 4	34 30 21 17	326 286 287 278	53 40 32 28	1189 1090 1006 850
TOTAL VOLUMES =	NL 53	NT 875	NR 149	SL 363	ST 1426	SR 510	EL 154	ET 1811	ER 28	WL 242	WT 2571	WR 279	TOTAL 8461
	k Hr Be	egins at:	730	AM									
PEAK VOLUMES =	35	589	90	163	784	309	93	987	15	167	1517	154	4903
PEAK HR. FACTOR:		0.858			0.885			0.941			0.837		0.928

Prepared by:

National Data & Surveying Services

N-S STREET: Corbin Ave DATE: 3/24/2009 LOCATION: City of Woodland Hills

E-W STREET: Victory Blvd DAY: TUESDAY PROJECT# 09-5108-009

	NC	ORTHBO	JND	SOUTHBOUND			Е	ASTBOU	ND	W	IND		
LANES:	NL 1	NT 2	NR 0	SL 1	ST 2	SR 0	EL 1	ET 2	ER 0	WL 1	WT 2	WR 0	TOTAL
4:00 PM	4	152	35	37	104	18	48	355	4	15	245	69	1086
4:15 PM	5	172	24	23	121	22	31	341	5	15	249	75	1083
4:30 PM	7	120	26	34	110	22	29	315	3	17	256	82	1021
4:45 PM	10	178	44	34	113	27	35	294	9	17	251	59	1071
5:00 PM	10	205	35	36	93	34	47	356	3	13	278	85	1195
5:15 PM	6	210	41	20	123	38	39	349	9	22	319	88	1264
5:30 PM	10	222	36	29	99	37	24	336	9	21	322	77	1222
5:45 PM	8	174	22	39	116	42	35	279	8	24	327	95	1169
TOTAL VOLUMES =	NL 60	NT 1433	NR 263	SL 252	ST 879	SR 240	EL 288	ET 2625	ER 50	WL 144	WT 2247	WR 630	TOTAL 9111

PM Peak Hr Begins at: 500 PM

PEAK														
VOLUMES =	34	811	134	124	431	151	145	1320	29	80	1246	345	4850	ı
	•						0	-0-0				0.0	.000	l
DEAK LID														l
PEAK HR.														ı
FACTOR:		0.913			0.896			0.920			0.937		0.959	l

Prepared by:

National Data & Surveying Services

N-S STREET: Tampa Ave DATE: 3/26/2009 LOCATION: City of Woodland Hills

E-W STREET: Victory Blvd DAY: THURSDAY PROJECT# 09-5108-010

	NC	DELLEG	LIND		DUTUDO.	LIND		ACTROU	ND	14	/ECTROL	IND	
	NC	ORTHBO	UND	SC	OUTHBO	UND	E	ASTBOU	ND	V	/ESTBOL	טאנ	
LANES:	NL 1	NT 2	NR 1	SL 1	ST 2	SR 0	EL 1	ET 2	ER 0	WL 1	WT 2	WR 0	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM 7:00 AM 7:15 AM	15 21	106 120	16 20	42 62	226 291	16 39	4 21	210 294	13 8	18 23	181 302	19 18	866 1219
7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM 9:30 AM 9:45 AM	18 32 26 16 16 16	177 157 192 164 138 181	26 23 23 35 33 37	71 66 55 69 58 44	306 276 288 268 188 187	69 60 49 47 31 26	8 11 15 22 16 10	386 318 281 325 320 202	9 16 10 8 8 10	19 16 20 25 24 27	425 369 317 303 299 268	23 31 15 18 26 27	1537 1375 1291 1300 1157 1035
TOTAL VOLUMES =	NL 160	NT 1235	NR 213	SL 467	ST 2030	SR 337	EL 107	ET 2336	ER 82	WL 172	WT 2464	WR 177	TOTAL 9780
AM Pea	ık Hr Be	gins at:	730	AM									
PEAK VOLUMES =	92	690	107	261	1138	225	56	1310	43	80	1414	87	5503
PEAK HR. FACTOR:		0.922			0.910			0.874			0.846		0.895

Prepared by:

National Data & Surveying Services

N-S STREET: Tampa Ave DATE: 3/26/2009 LOCATION: City of Woodland Hills

E-W STREET: Victory Blvd DAY: THURSDAY PROJECT# 09-5108-010

	NC	RTHBO	UND	SC	SOUTHBOUND			ASTBOU	ND	W	IND		
LANES:	NL 1	NT 2	NR 1	SL 1	ST 2	SR 0	EL 1	ET 2	ER 0	WL 1	WT 2	WR 0	TOTAL
4:00 PM	25	227	19	35	151	20	27	302	13	16	273	45	1153
4:15 PM	42	209	28	45	134	34	28	284	18	14	233	41	1110
4:30 PM	47	244	28	49	141	27	32	289	7	20	292	46	1222
4:45 PM	35	250	27	46	149	25	19	331	14	16	264	43	1219
5:00 PM	36	299	30	52	156	30	30	433	12	16	307	51	1452
5:15 PM	40	316	22	37	165	24	23	440	6	13	365	53	1504
5:30 PM	50	247	29	57	162	34	23	356	8	19	396	58	1439
5:45 PM	38	259	27	47	136	40	28	367	12	10	319	30	1313
TOTAL VOLUMES =	NL 313	NT 2051	NR 210	SL 368	ST 1194	SR 234	EL 210	ET 2802	ER 90	WL 124	WT 2449	WR 367	TOTAL 10412

PM Peak Hr Begins at: 500 PM

708
949

Prepared by:

National Data & Surveying Services

N-S STREET: Wilbur Ave DATE: 3/25/2009 LOCATION: City of Woodland Hills

E-W STREET: Victory Blvd DAY: WEDNESDAY PROJECT# 09-5108-011

	NC	DTUDO	INID	<u> </u>	NITURA	LIND		ACTROL	IND	14	/CCTDOL	IND	
	INC	RTHBO	טווט	50	OUTHBO	טווט		ASTBOU	טאנ	V\	/ESTBOL	טאנ	
LANES:	NL 1	NT 2	NR 0	SL 1	ST 2	SR 0	EL 1	ET 2	ER 0	WL 1	WT 2	WR 0	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM 7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM	8 6 18 17 25 19 8 11	54 97 145 171 151 105 83 69	10 18 20 23 32 17 11 7	48 53 38 36 34 32 48 39	179 235 334 348 245 195 164 171	27 37 38 52 31 34 21 30	6 10 17 15 16 20 16 10	272 367 386 369 389 335 322 302	6 27 26 36 26 17 20 23	6 16 17 19 21 26 16 22	191 273 442 389 389 274 272 286	21 22 16 46 21 17 27 17	828 1161 1497 1521 1380 1091 1008 987
TOTAL VOLUMES =	NL 112	NT 875	NR 138	SL 328	ST 1871	SR 270	EL 110	ET 2742	ER 181	WL 143	WT 2516	WR 187	TOTAL 9473
AM Pea	ı ık Hr Be	gins at:	715	AM						1			
PEAK VOLUMES =	66	564	93	161	1162	158	58	1511	115	73	1493	105	5559
PEAK HR. FACTOR:		0.857			0.849			0.977			0.879		0.914

Prepared by:

National Data & Surveying Services

N-S STREET: Wilbur Ave DATE: 3/25/2009 LOCATION: City of Woodland Hills

E-W STREET: Victory Blvd DAY: WEDNESDAY PROJECT# 09-5108-011

	NC	RTHBO	JND	SC	UTHBO	UND	Е	ASTBOU	ND	W	/ESTBOU	IND	
LANES:	NL 1	NT 2	NR 0	SL 1	ST 2	SR 0	EL 1	ET 2	ER 0	WL 1	WT 2	WR 0	TOTAL
4:00 PM	30	148	24	35	101	19	39	344	21	8	251	40	1060
4:15 PM	31	141	22	22	85	26	26	367	20	11	308	42	1101
4:30 PM	28	139	18	34	85	13	37	344	19	14	253	41	1025
4:45 PM	28	156	19	29	117	17	38	395	15	14	340	39	1207
5:00 PM	43	184	26	24	114	29	26	397	24	14	291	48	1220
5:15 PM	30	229	25	26	156	22	27	399	12	13	352	58	1349
5:30 PM	37	192	18	22	123	29	37	423	17	19	360	60	1337
5:45 PM	29	177	16	30	126	46	28	357	11	6	323	40	1189
TOTAL VOLUMES =	NL 256	NT 1366	NR 168	SL 222	ST 907	SR 201	EL 258	ET 3026	ER 139	WL 99	WT 2478	WR 368	TOTAL 9488

PM Peak Hr Begins at: 445 PM

PEAK														
VOLUMES =	138	761	88	101	510	97	128	1614	68	60	1343	205	5113	I
10201120		, 01	00		510	٠,		101.	•		10 .0		0110	
PEAK HR.														
FACTOR:		0.869			0.868			0.949			0.916		0.948	

Prepared by:

National Data & Surveying Services

N-S STREET: Reseda Blvd DATE: 3/26/2009 LOCATION: City of Woodland Hills

E-W STREET: Victory Blvd DAY: THURSDAY PROJECT# 09-5108-012

	NC	ORTHBO	UND	SC	OUTHBO	UND	E	ASTBOU	ND	V	/ESTBOL	JND	
LANES:	NL 1	NT 3	NR 0	SL 1	ST 3	SR 0	EL 1	ET 3	ER 0	WL 1	WT 2	WR 1	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM													
7:00 AM 7:15 AM 7:30 AM 7:45 AM	14 13 14 23	110 156 205 205	18 23 40 31	19 19 29 28	195 246 287 230	11 21 57 59	12 15 24 29	256 413 435 444	16 18 19 17	18 25 22 24	183 326 413 363	17 20 19 38	869 1295 1564 1491
8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM	20 19 16 18	167 137 159 164	24 18 30 16	27 21 27 26	237 205 242 156	31 31 29 26	34 31 19 18	375 404 374 283	14 18 22 25	21 28 24 32	272 313 282 267	31 18 15 28	1253 1243 1239 1059
9:15 AM 9:30 AM 9:45 AM													
TOTAL VOLUMES =	NL 137	NT 1303	NR 200	SL 196	ST 1798	SR 265	EL 182	ET 2984	ER 149	WL 194	WT 2419	WR 186	TOTAL 10013
AM Pea	ık Hr Be	gins at:	715	AM									
PEAK VOLUMES =	70	733	118	103	1000	168	102	1667	68	92	1374	108	5603
PEAK HR. FACTOR:		0.889			0.852			0.937			0.867		0.896

Prepared by:

National Data & Surveying Services

N-S STREET: Reseda Blvd DATE: 3/26/2009 LOCATION: City of Woodland Hills

E-W STREET: Victory Blvd DAY: THURSDAY PROJECT# 09-5108-012

-	NC	RTHBO	JND	SC	UTHBO	JND	E	ASTBOU	ND	W	/ESTBOL	IND	
LANES:	NL 1	NT 3	NR 0	SL 1	ST 3	SR 0	EL 1	ET 3	ER 0	WL 1	WT 2	WR 1	TOTAL
4:00 PM	25	258	22	24	200	43	37	312	33	18	255	32	1259
4:15 PM	23	247	40	32	183	39	41	371	27	24	269	34	1330
4:30 PM	29	254	32	27	218	46	33	345	32	22	290	31	1359
4:45 PM	33	247	22	24	184	46	38	331	18	14	224	28	1209
5:00 PM	25	269	27	24	196	41	34	391	23	29	321	40	1420
5:15 PM	31	291	26	24	201	37	31	423	31	20	347	35	1497
5:30 PM	29	295	27	19	229	52	38	344	23	26	363	50	1495
5:45 PM	30	211	31	22	174	31	29	349	30	22	291	31	1251
TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
VOLUMES =	225	2072	227	196	1585	335	281	2866	217	175	2360	281	10820

PM Peak Hr Begins at: 500 PM

PEAK														
VOLUMES =	115	1066	111	89	800	161	132	1507	107	97	1322	156	5663	ı
10201120		1000		0,5	000	-0-		1007	-0,	,	1022	100	5005	ı
														ı
PEAK HR.														
FACTOR:		0.920			0.875			0.900			0.897		0.946	

Prepared by:

National Data & Surveying Services

N-S STREET: De Soto Ave DATE: 11/6/2008 LOCATION: City of Woodland Hills

E-W STREET: El Rancho Dr DAY: THURSDAY PROJECT# 08-5115-003

	NO	ORTHBO	JND	SC	OUTHBOU	JND	E	ASTBOU	ND	W	ESTBOU	IND	
LANES:	NL 1	NT 3	NR 1	SL 1	ST 3	SR 1	EL 1	ET 1	ER 1	WL 1	WT 0	WR 1	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM 7:00 AM 7:15 AM 7:30 AM 8:00 AM 8:15 AM 8:30 AM 9:15 AM 9:30 AM 9:15 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:30 AM 11:45 AM	1 0 1 0 1 0 0 4	221 343 397 467 379 280 235 244	13 18 27 53 29 19 16 19	5 5 11 18 10 3 7 11	357 531 552 656 543 583 488 523	0 0 0 0 0 0 1 0	0 0 1 0 1 0		0 1 0 0 1 1 0 2	1 0 1 5 7 5 4 4		4 4 6 7 11 5 3 4	602 902 996 1206 982 896 755 811
TOTAL VOLUMES =	NL 7	NT 2566	NR 194	SL 70	ST 4233	SR 1	EL 3	ET 0	ER 5	WL 27	WT 0	WR 44	TOTAL 7150
AM Pea	k Hr Be	egins at:	715	AM									
PEAK VOLUMES =	2	1586	127	44	2282	0	2	0	2	13	0	28	4086
PEAK HR. FACTOR:		0.825			0.863			0.500			0.569		0.847

Intersection Turning Movement Prepared by:

National Data & Surveying Services

DATE: 11/6/2008 LOCATION: City of Woodland Hills N-S STREET: De Soto Ave

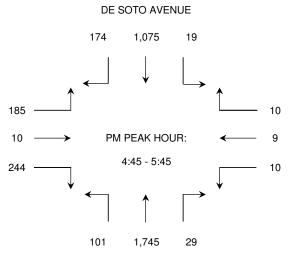
DAY: THURSDAY PROJECT# E-W STREET: El Rancho Dr 08-5115-003

	NO	ORTHBO	UND	SO	OUTHBOU	JND	E	ASTBOU	ND	W	/ESTBOU	IND	
LANES:	NL 1	NT 3	NR 1	SL 1	ST 3	SR 1	EL 1	ET 1	ER 1	WL 1	WT 0	WR 1	TOTAL
1:00 PM 1:15 PM 1:30 PM 1:45 PM 2:00 PM 2:15 PM 2:30 PM 3:15 PM 3:30 PM 3:15 PM 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:15 PM 6:30 PM 6:45 PM	1 1 1 0 1 3 2 1	472 418 439 498 508 460 464 432	14 12 13 21 39 47 49 58	6 2 0 0 1 4 4 5	276 294 299 293 293 318 290 331	1 1 1 0 0 0 1	1 1 1 1 0 0 2 0		0 0 1 1 0 2 2 2	21 11 10 9 13 4 9		7 1 2 4 1 1 4 1	799 741 767 827 856 839 827 839
TOTAL VOLUMES =	NL 10	NT 3691	NR 253	SL 22	ST 2394	SR 4	EL 6	ET 0	ER 8	WL 86	WT 0	WR 21	TOTAL 6495
PM Pea	ık Hr Be	egins at:	500	PM									
PEAK VOLUMES =	7	1864	193	14	1232	1	2	0	6	35	0	7	3361
PEAK HR. FACTOR:		0.942			0.928			0.500			0.750		0.982

VEHICLE TURNING MOVEMENT COUNT SUMMARY

N/S STREET: DE SOTO AVENUE E/W STREET: ERWIN STREET/ BELLA VISTA LANE

PERIOD: AM PEAK HOUR DATE: TUESDAY June 5, 2007


15-MINUTE	WEST	TBOUNE)	EAST	BOUND)	NOR	THBOUN	D	SOU	THBOUN	ID	
TOTALS	L	Т	R	L	Т	R	L	Т	R	L	Т	R	TOTAL
7:00 - 7:15	6	0	10	10	0	12	42	141	2	3	421	45	692
7:15 - 7:30	2	2	7	6	0	20	32	321	2	2	391	39	824
7:30 - 7:45	3	3	6	9	0	27	28	330	1	3	536	31	977
7:45 - 8:00	4	1	6	4	0	32	35	328	1	3	485	44	943
8:00 - 8:15	5	2	4	4	0	36	40	319	1	8	470	42	931
8:15 - 8:30	6	4	5	5	2	42	48	322	2	10	586	39	1,071
8:30 - 8:45	2	2	4	12	0	36	57	176	0	3	464	36	792
8:45 - 9:00	3	3	3	8	0	40	51	202	1	2	490	31	834

1-HOUR	WES	TBOUNI)				NOF	RTHBOUN	D	SOL	ITHBOUN	1D	
TOTALS	L	T	R	L	Т	R	L	Т	R	L	Т	R	TOTAL
7:00 - 8:00	15	6	29	29	0	91	137	1,120	6	11	1,833	159	3,436
7:15 - 8:15	14	8	23	23	0	115	135	1,298	5	16	1,882	156	3,675
7:30 - 8:30	18	10	21	22	2	137	151	1,299	5	24	2,077	156	3,922 *
7:45 - 8:45	17	9	19	25	2	146	180	1,145	4	24	2,005	161	3,737
8:00 - 9:00	16	11	16	29	2	154	196	1,019	4	23	2,010	148	3,628

PERIOD: PM PEAK HOUR **DATE:** TUESDAY June 5, 2007

15-MINUTE	WEST	BOUND)	EAST	BOUND)	NOR	THBOUN	D	SOU	THBOUN	D	
TOTALS	L	Т	R	L	Т	R	L	Т	R	L	Т	R	TOTAL
4:00 - 4:15	1	0	1	40	1	54	30	427	5	4	273	37	873
4:15 - 4:30	2	0	1	46	3	51	29	408	5	3	365	46	959
4:30 - 4:45	1	1	2	39	2	50	40	358	6	4	254	31	788
4:45 - 5:00	3	3	2	48	0	53	28	465	10	6	264	45	927
5:00 - 5:15	2	1	3	49	6	74	15	382	7	3	271	46	859
5:15 - 5:30	2	3	3	56	3	61	30	477	7	5	225	44	916
5:30 - 5:45	3	2	2	32	1	56	28	421	5	5	315	39	909
5:45 - 6:00	3	3	3	25	2	37	29	428	5	6	279	32	852

1-HOUR	WES	BOUNE)	EAS	ΓΒΟυΝΙ)	NOF	RTHBOUN	ID	SOU	THBOUN	۱D	
TOTALS	L	T	R	L	Т	R	L	Т	R	L	Т	R	TOTAL
4:00 - 5:00	7	4	6	173	6	208	127	1,658	26	17	1,156	159	3,547
4:15 - 5:15	8	5	8	182	11	228	112	1,613	28	16	1,154	168	3,533
4:30 - 5:30	8	8	10	192	11	238	113	1,682	30	18	1,014	166	3,490
4:45 - 5:45	10	9	10	185	10	244	101	1,745	29	19	1,075	174	3,611 *
5:00 - 6:00	10	9	11	162	12	228	102	1,708	24	19	1,090	161	3,536

ERWIN STREET/ BELLA VISTA LANE

ERWIN STREET/ BELLA VISTA LANE

Prepared by:

National Data & Surveying Services

N-S STREET: Winnetka Ave DATE: 11/6/2008 LOCATION: City of Woodland Hills

E-W STREET: Calvert St/Brahma Dr DAY: THURSDAY PROJECT# 08-5115-002

	NC	ORTHBOU	JND	SC	OUTHBO	UND	E	ASTBOU	ND	W	'ESTBOL	JND	
LANES:	NL 1	NT 2	NR 0	SL 0	ST 2	SR 1	EL 2	ET 0	ER 1	WL 1	WT 0.5	WR 0.5	TOTAL
6:00 AM 6:15 AM 6:30 AM 7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 9:00 AM 9:15 AM 9:30 AM 9:15 AM 10:00 AM 10:15 AM 10:30 AM 10:45 AM 11:30 AM 11:45 AM	15 21 40 69 54 38 22 30	141 203 230 288 268 186 205 221	0 0 1 0 2 1 0 0	2 0 3 1 0 1 1 2	324 339 337 287 218 263 221 231	13 22 46 65 49 22 19 23	1 9 11 17 10 10 8 8		4 4 9 18 12 6 2 12	1 5 13 14 17 5 9 3	0 2 8 7 5 1 2 4	0 3 11 21 29 10 3 5	501 608 709 787 664 543 492 539
TOTAL VOLUMES =	NL 289	NT 1742	NR 4	SL 10	ST 2220	SR 259	EL 74	ET 0	ER 67	WL 67	WT 29	WR 82	TOTAL 4843
AM Pea	ak Hr Be	gins at:	715	AM									
PEAK VOLUMES =	184	989	3	4	1181	182	47	0	43	49	22	64	2768
PEAK HR. FACTOR:		0.824			0.885			0.643			0.662		0.879

Prepared by:

National Data & Surveying Services

N-S STREET: Winnetka Ave DATE: 11/6/2008 LOCATION: City of Woodland Hills

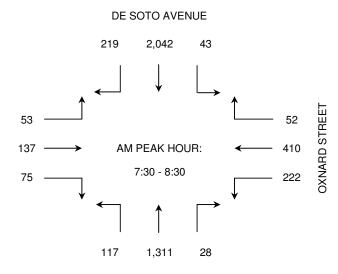
E-W STREET: Calvert St/Brahma Dr DAY: THURSDAY PROJECT# 08-5115-002

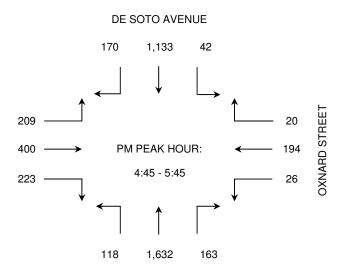
	NO	ORTHBOU	JND	SC	OUTHBOU	JND	E	ASTBOU	IND	W	ESTBOL	IND	
LANES:	NL 1	NT 2	NR 0	SL 0	ST 2	SR 1	EL 2	ET 0	ER 1	WL 1	WT 0.5	WR 0.5	TOTAL
1:00 PM 1:15 PM 1:30 PM 1:45 PM 2:00 PM 2:15 PM 2:30 PM 2:45 PM 3:00 PM 3:15 PM 3:30 PM 4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:15 PM 6:30 PM 6:45 PM	13 15 16 17 23 39 32 52	305 287 320 309 315 304 254 295	0 3 0 0 0 0	3 0 4 3 0 3 4 2	203 213 198 212 203 198 209 185	25 22 26 20 19 33 37 46	26 29 35 34 43 34 29 20		27 25 16 22 36 30 27 17	11 10 6 5 3 4 11 7	3 0 0 1 1 2 2 1	5 7 4 10 4 3 7 5	621 611 625 633 647 650 612 630
TOTAL VOLUMES =	NL 207	NT 2389	NR 3	SL 19	ST 1621	SR 228	EL 250	ET 0	ER 200	WL 57	WT 10	WR 45	TOTAL 5029
	ak Hr Be	egins at:	430	PM									
PEAK VOLUMES =	95	1248	0	10	811	98	146	0	104	18	4	21	2555
PEAK HR. FACTOR:		0.979			0.978			0.791			0.672		0.983

VEHICLE TURNING MOVEMENT COUNT SUMMARY

N/S STREET: DE SOTO AVENUE E/W STREET: OXNARD STREET

PERIOD: AM PEAK HOUR **DATE:** WEDNESDAY June 6, 2007


15-MINUTE	WES	STBOUN	D	EAS	TBOUN	D	NOR	THBOU	ND	SOU	THBOU	ND	
TOTALS	L	Т	R	L	Т	R	L	Т	R	L	Т	R	TOTAL
7:00 - 7:15	29	29	1	12	22	24	37	315	6	3	526	16	1,020
7:15 - 7:30	24	24	7	9	10	11	15	206	6	5	383	35	735
7:30 - 7:45	43	76	16	12	32	17	22	326	8	8	497	42	1,099
7:45 - 8:00	63	111	14	14	45	18	35	315	10	10	504	54	1,193
8:00 - 8:15	67	110	11	14	31	19	32	341	6	13	465	77	1,186
8:15 - 8:30	49	113	11	13	29	21	28	329	4	12	576	46	1,231
8:30 - 8:45	53	96	12	12	26	26	15	282	5	10	459	53	1,049
8:45 - 9:00	37	87	14	12	21	24	6	228	6	6	486	39	966


1-HOUR	WES	TBOUNI	D	EAS	TBOUNI)	NOF	RTHBOUN	ID	SOU	ITHBOUN	۷D	
TOTALS	L	Т	R	L	Т	R	L	Т	R	L	Т	R	TOTAL
7:00 - 8:00	159	240	38	47	109	70	109	1,162	30	26	1,910	147	4,047
7:15 - 8:15	197	321	48	49	118	65	104	1,188	30	36	1,849	208	4,213
7:30 - 8:30	222	410	52	53	137	75	117	1,311	28	43	2,042	219	4,709 *
7:45 - 8:45	232	430	48	53	131	84	110	1,267	25	45	2,004	230	4,659
8:00 - 9:00	206	406	48	51	107	90	81	1,180	21	41	1,986	215	4,432

PERIOD: PM PEAK HOUR **DATE:** WEDNESDAY June 6, 2007

15-MINUTE	WES	TBOUNE)	EAS	TBOUN)	NOR	THBOUN	ND	SOU	THBOUN	1D	
TOTALS	L	Т	R	L	Т	R	L	Т	R	L	Т	R	TOTAL
4:00 - 4:15	8	30	3	72	92	61	45	369	42	12	314	48	1,096
4:15 - 4:30	9	31	3	60	82	45	10	367	49	10	245	27	938
4:30 - 4:45	10	45	5	34	82	40	19	360	27	9	256	42	929
4:45 - 5:00	7	56	5	40	90	49	22	449	33	8	289	39	1,087
5:00 - 5:15	7	48	4	50	110	63	35	351	45	10	303	47	1,073
5:15 - 5:30	6	51	5	60	99	52	26	445	39	10	242	40	1,075
5:30 - 5:45	6	39	6	59	101	59	35	387	46	14	299	44	1,095
5:45 - 6:00	8	56	5	45	114	46	27	299	30	16	241	46	933

1-HOUR	WES	TBOUN	D	EAS	TBOUN	D	NOF	THBOU	ND	SOL	THBOUN	۷D	
TOTALS	L	Т	R	L	Т	R	L	Т	R	L	Т	R	TOTAL
4:00 - 5:00	34	162	16	206	346	195	96	1,545	151	39	1,104	156	4,050
4:15 - 5:15	33	180	17	184	364	197	86	1,527	154	37	1,093	155	4,027
4:30 - 5:30	30	200	19	184	381	204	102	1,605	144	37	1,090	168	4,164
4:45 - 5:45	26	194	20	209	400	223	118	1,632	163	42	1,133	170	4,330 *
5:00 - 6:00	27	194	20	214	424	220	123	1,482	160	50	1,085	177	4,176

Prepared by:

National Data & Surveying Services

N-S STREET: Winnetka Ave DATE: 3/24/2009 LOCATION: City of Woodland Hills

E-W STREET: Oxnard St DAY: TUESDAY PROJECT# 09-5108-013

	No	ORTHBOU	UND	SC	OUTHBO	UND	F	ASTBOU	IND	W	/ESTBOL	IND	
LANES:	NL 1	NT 2	NR 0	SL 1	ST 2	SR 0	EL 1	ET 1	ER 1	WL 0	WT 1	WR 0	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM 7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM	4 4 15 11 19 5 12 16	105 225 305 241 293 234 162 180	5 6 8 20 11 8 8 3	1 3 4 13 11 5 3 4	307 336 350 373 308 284 277 292	21 32 68 54 64 43 31 39	15 26 29 43 47 30 19 13	14 22 62 107 74 32 27 23	11 18 21 18 8 10 10	5 14 12 10 19 7 6 6	20 27 62 74 74 49 27 33	2 2 9 2 1 2	510 715 938 973 930 708 584 624
TOTAL VOLUMES =	NL 86	NT 1745	NR 69	SL 44	ST 2527	SR 352	EL 222	ET 361	ER 110	WL 79	WT 366	WR 21	TOTAL 5982
AM Pea	ık Hr Be	egins at:	715	AM									
PEAK VOLUMES =	49	1064	45	31	1367	218	145	265	65	55	237	15	3556
PEAK HR. FACTOR:		0.883			0.918			0.707			0.808		0.914

Prepared by:

National Data & Surveying Services

N-S STREET: Winnetka Ave DATE: 3/24/2009 LOCATION: City of Woodland Hills

E-W STREET: Oxnard St DAY: TUESDAY PROJECT# 09-5108-013

	NC	ORTHBOU	JND	SC	OUTHBOU	JND	E	ASTBOU	IND	W	ESTBOL	JND	
LANES:	NL 1	NT 2	NR 0	SL 1	ST 2	SR 0	EL 1	ET 1	ER 1	WL 0	WT 1	WR 0	TOTAL
4:00 PM	23	273	13	3	250	24	48	89	15	8	12	3	761
4:15 PM	14	272	14	7	258	18	25	61	16	4	8	0	697
4:30 PM	17	318	18	5	251	24	56	111	15	5	12	7	839
4:45 PM	22	297	8	7	224	24	32	111	16	2	5	1	749
5:00 PM	30	324	10	10	225	28	51	113	15	2	22	7	837
5:15 PM	20	241	23	9	209	27	29	113	10	2	19	3	705
5:30 PM	23	284	20	10	251	23	34	94	14	5	23	5	786
5:45 PM	18	301	7	4	221	17	27	77	6	5	14	7	704
TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
VOLUMES =	167	2310	113	55	1889	185	302	769	107	33	115	33	6078

PM Peak Hr Begins at: 430 PM

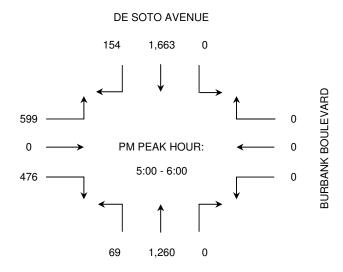
PEAK														
VOLUMES =	89	1180	59	31	909	103	168	448	56	11	58	18	3130	ı
10201120	0,5	1100		01	303	100	-00				50		3130	۱
DEALLID													i	l
PEAK HR.														ı
FACTOR:		0.912			0.931			0.923			0.702		0.933	ı
I ACTOR.		0.512			0.551			0.525			0.702		0.555	

VEHICLE TURNING MOVEMENT COUNT SUMMARY

N/S STREET: DE SOTO AVENUE E/W STREET: BURBANK BOULEVARD

PERIOD: AM PEAK HOUR **DATE:** TURSDAY June 7, 2007

15-MINUTE	WES1	BOUND)	EAST	BOUNE)	NOR ⁻	THBOUN	ID	SOU	THBOUN	1D	
TOTALS	L	Т	R	L	Т	R	L	Т	R	L	Т	R	TOTAL
7:00 - 7:15	0	0	0	13	0	18	40	235	0	0	279	127	712
7:15 - 7:30	0	0	0	20	0	26	40	273	0	0	377	120	856
7:30 - 7:45	0	0	0	31	0	39	34	324	0	0	420	115	963
7:45 - 8:00	0	0	0	41	0	35	34	401	0	0	416	148	1,075
8:00 - 8:15	0	0	0	36	0	25	60	398	0	0	320	157	996
8:15 - 8:30	0	0	0	38	0	30	60	339	0	0	342	162	971
8:30 - 8:45	0	0	0	34	0	22	51	350	0	0	355	167	979
8:45 - 9:00	0	0	0	34	0	25	57	343	0	0	317	128	904


1-HOUR	WES	FBOUND)	EAST	BOUNI)	NOF	RTHBOUN	D	SOU	THBOUN	1D	
TOTALS	L	Т	R	L	Т	R	L	Т	R	L	Т	R	TOTAL
7:00 - 8:00	0	0	0	105	0	118	148	1,233	0	0	1,492	510	3,606
7:15 - 8:15	0	0	0	128	0	125	168	1,396	0	0	1,533	540	3,890
7:30 - 8:30	0	0	0	146	0	129	188	1,462	0	0	1,498	582	4,005
7:45 - 8:45	0	0	0	149	0	112	205	1,488	0	0	1,433	634	4,021 *
8:00 - 9:00	0	0	0	142	0	102	228	1,430	0	0	1,334	614	3,850

DE SOTO AVENUE

PERIOD: PM PEAK HOUR DATE: TURSDAY June 7, 2007

15-MINUTE	WEST	FBOUND)	EAST	BOUNI)	NOR	THBOUN	ID	SOU	THBOUN	ID	
TOTALS	L	Т	R	L	Т	R	L	Т	R	L	Т	R	TOTAL
4:00 - 4:15	0	0	0	126	0	99	18	327	0	0	342	44	956
4:15 - 4:30	0	0	0	124	0	107	22	322	0	0	342	43	960
4:30 - 4:45	0	0	0	141	0	105	21	345	0	0	339	31	982
4:45 - 5:00	0	0	0	133	0	106	20	232	0	0	322	35	848
5:00 - 5:15	0	0	0	175	0	116	14	314	0	0	401	38	1,058
5:15 - 5:30	0	0	0	155	0	125	25	326	0	0	418	47	1,096
5:30 - 5:45	0	0	0	149	0	133	13	328	0	0	419	38	1,080
5:45 - 6:00	0	0	0	120	0	102	17	292	0	0	425	31	987

1-HOUR	WES	FBOUND)	EAST	BOUN	D	NOF	RTHBOUN	D	SOU	THBOUN	۱D	
TOTALS	L	Т	R	L	Т	R	L	Т	R	L	Т	R	TOTAL
4:00 - 5:00	0	0	0	524	0	417	81	1,226	0	0	1,345	153	3,746
4:15 - 5:15	0	0	0	573	0	434	77	1,213	0	0	1,404	147	3,848
4:30 - 5:30	0	0	0	604	0	452	80	1,217	0	0	1,480	151	3,984
4:45 - 5:45	0	0	0	612	0	480	72	1,200	0	0	1,560	158	4,082
5:00 - 6:00	0	0	0	599	0	476	69	1,260	0	0	1,663	154	4,221 *

CLIENT: CRAIN & ASSOCIATES
PROJECT: WESTFIELD WEST VALLEY II
DATE: TUESDAY, JUNE 19, 2007
PERIOD: 07:00 AM TO 09:00 AM
INTERSECTION: N/S DE SOTO AVENUE

E/W US - 101 WB ON - OFF RAMP

FILE NUMBER: 44-AM

													1
15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
700-715	114	208	0	171	0	24	0	185	15	0	0	0	
715-730	106	269	0	148	0	34	0	263	26	0	0	0	
730-745	183	284	0	142	2	36	0	337	41	0	0	0	
745-800	131	263	0	156	0	33	0	330	53	0	0	0	
800-815	112	287	0	144	0	46	0	341	44	0	0	0	
815-830	105	242	0	153	2	30	0	324	33	0	0	0	
830-845	126	212	0	144	0	55	0	297	27	0	0	0	
845-900	104	199	0	167	1	44	0	250	21	0	0	0	
- 													•
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
700-800	534	1024	0	617	2	127	0	1115	135	0	0	0	3554
715-815	532	1103	0	590	2	149	0	1271	164	0	0	0	3811
730-830	531	1076	0	595	4	145	0	1332	171	0	0	0	3854
745-845	474	1004	0	597	2	164	0	1292	157	0	0	0	3690
800-900	447	940	0	608	3	175	0	1212	125	0	0	0	3510
A.M. PEAK I	HOUR				531	1076	0						
0730-083	30												
						•	,						
			0		•			1	<u> </u>	595			
									_				
			0						_	4			
US - 101 WB	ON - OFF	RAMP	•		•			•					
			0							145			
			-		_								
				•	<u>'</u>			,	/				
						1	, [→					
					171	1332	0						

DE SOTO AVENUE

CLIENT: CRAIN & ASSOCIATES
PROJECT: WESTFIELD WEST VALLEY II
DATE: TUESDAY, JUNE 19, 2007
PERIOD: 04:00 PM TO 06:00 PM
INTERSECTION: N/S DE SOTO AVENUE

E/W US - 101 WB ON - OFF RAMP

FILE NUMBER: 44-PM

	1			1	,		,						1
15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
400-415	106	279	0	130	0	59	0	216	50	0	0	0	
415-430	145	309	0	112	0	69	0	230	61	0	0	0	
430-445	127	354	0	129	0	68	0	231	53	0	0	0	
445-500	170	350	0	110	0	52	0	227	65	0	0	0	
500-515	149	319	0	113	0	68	0	250	55	0	0	0	
515-530	130	349	0	117	0	73	0	269	53	0	0	0	
530-545	125	306	0	99	0	59	0	244	45	0	0	0	
545-600	85	300	0	83	0	60	0	222	41	0	0	0	
1				1		1				1			1
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	ļ
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
400-500	548	1292	0	481	0	248	0	904	229	0	0	0	
415-515	591	1332	0	464	0	257	0	938	234	0	0	0	
430-530	576	1372	0	469	0	261	0	977	226	0	0	0	
445-545	574	1324	0	439	0	252	0	990	218	0	0	0	
500-600	489	1274	0	412	0	260	0	985	194	0	0	0	3614
P.M. PEAK I					576	1372 I	0						
0430-05	30												
						1	,	→					
				4	L	•		4	\				
			0 .							469			
			0 .		•			•		0			
US - 101 WB	ON - OFF	RAMP											
			0							261			
				1	,				,				
				·	•	4	٠,	→ `	,				
					,			•					
							l						
					226	977	0						

DE SOTO AVENUE

CLIENT: CRAIN & ASSOCIATES
PROJECT: WESTFIELD WEST VALLEY II
DATE: TUESDAY, JUNE 19, 2007
PERIOD: 07:00 AM TO 09:00 AM
INTERSECTION: N/S DE SOTO AVENUE

E/W US - 101 EB ON - OFF RAMP

FILE NUMBER: 45-AM

													_
15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
700-715	0	88	106	0	0	0	24	105	0	57	2	108	
715-730	0	106	191	0	0	0	20	153	0	98	3	143	
730-745	0	80	235	0	0	0	24	203	0	80	0	165	
745-800	0	87	267	0	0	0	34	191	0	115	0	197	
800-815	0	88	219	0	0	0	41	206	0	112	1	166	
815-830	0	63	169	0	0	0	28	189	0	83	0	172	
830-845	0	86	206	0	0	0	36	158	0	80	0	161	
845-900	0	77	190	0	0	0	32	140	0	57	0	134	
													_
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
700-800	0	361	799	0	0	0	102	652	0	350	5	613	2882
715-815	0	361	912	0	0	0	119	753	0	405	4	671	3225
730-830	0	318	890	0	0	0	127	789	0	390	1	700	3215
745-845	0	324	861	0	0	0	139	744	0	390	1	696	3155
800-900	0	314	784	0	0	0	137	693	0	332	1	633	2894
A.M. PEAK I	HOUR				0	361	912						
0715-08	15												
							, [-					
				4	`	•		4	1				
			671							. 0			
			4 .	>	•					0			
US - 101 EB	ON - OFF	RAMP											
			405							0			
				4	,				,				
					←	4	٠ ,	→ `					
					0	753	119						

DE SOTO AVENUE

CLIENT: CRAIN & ASSOCIATES
PROJECT: WESTFIELD WEST VALLEY II
DATE: TUESDAY, JUNE 19, 2007
PERIOD: 04:00 PM TO 06:00 PM
INTERSECTION: N/S DE SOTO AVENUE

E/W US - 101 EB ON - OFF RAMP

FILE NUMBER: 45-PM

													_
15 MINUTE	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	
400-415	0	187	153	0	0	0	36	143	0	42	1	134	
415-430	0	209	189	0	0	0	56	183	0	35	1	116	
430-445	0	211	200	0	0	0	54	150	0	46	0	118	
445-500	0	171	238	0	0	0	74	183	0	46	0	122	
500-515	0	179	200	0	0	0	45	199	0	57	2	123	
515-530	0	191	222	0	0	0	62	187	0	50	0	131	
530-545	0	214	178	0	0	0	53	150	0	61	0	129	
545-600	0	187	175	0	0	0	63	130	0	50	1	142	
-													_
1 HOUR	1	2	3	4	5	6	7	8	9	10	11	12	
TOTALS	SBRT	SBTH	SBLT	WBRT	WBTH	WBLT	NBRT	NBTH	NBLT	EBRT	EBTH	EBLT	TOTALS
400-500	0	778	780	0	0	0	220	659	0	169	2	490	3098
415-515	0	770	827	0	0	0	229	715	0	184	3	479	3207
430-530	0	752	860	0	0	0	235	719	0	199	2	494	3261
445-545	0	755	838	0	0	0	234	719	0	214	2	505	3267
500-600	0	771	775	0	0	0	223	666	0	218	3	525	3181
P.M. PEAK I					0	755	838						
0445-05	45												
							, [→					
				4	\	•	•		1				
			505							. 0			
			2 .	→	•			•		0			
US - 101 EB	ON - OFF	RAMP											
			214					1		0			
				4	7			•	7				
					←	4	٠ ,	→ `					
					0	719	234						

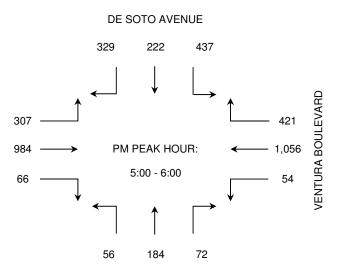
DE SOTO AVENUE

VEHICLE TURNING MOVEMENT COUNT SUMMARY

N/S STREET: DE SOTO AVENUE E/W STREET: VENTURA BOULEVARD

PERIOD: AM PEAK HOUR **DATE:** TURSDAY June 7, 2007

15-MINUTE	WES	STBOUN	D	EAS	TBOUN	D	NOR	THBOU	ND	SOU	THBOU	ND	
TOTALS	L	Т	R	L	Т	R	L	Т	R	L	Т	R	TOTAL
7:00 - 7:15	10	112	35	41	141	5	7	28	10	54	42	59	544
7:15 - 7:30	17	163	63	44	211	9	13	42	18	102	31	64	777
7:30 - 7:45	19	226	114	54	268	16	11	50	21	125	59	74	1,037
7:45 - 8:00	14	245	125	64	365	12	38	79	42	176	58	75	1,293
8:00 - 8:15	12	293	122	58	272	17	23	91	40	180	44	107	1,259
8:15 - 8:30	14	317	83	46	307	10	13	43	26	151	37	86	1,133
8:30 - 8:45	14	307	69	56	263	16	15	44	24	144	35	106	1,093
8:45 - 9:00	11	230	77	28	206	20	20	47	27	160	51	117	994


1-HOUR	WE	STBOUN	ID	EAS	STBOUNI	D	NOR ⁻	THBOUN	ND	SOU	THBOUN	1D	
TOTALS	L	Т	R	L	Т	R	L	Т	R	L	Т	R	TOTAL
7:00 - 8:00	60	746	337	203	985	42	69	199	91	457	190	272	3,651
7:15 - 8:15	62	927	424	220	1,116	54	85	262	121	583	192	320	4,366
7:30 - 8:30	59	1,081	444	222	1,212	55	85	263	129	632	198	342	4,722
7:45 - 8:45	54	1,162	399	224	1,207	55	89	257	132	651	174	374	4,778 *
8:00 - 9:00	51	1,147	351	188	1,048	63	71	225	117	635	167	416	4,479

DE SOTO AVENUE

PERIOD: PM PEAK HOUR DATE: TURSDAY June 7, 2007

	15-MINUTE	WES	STBOUN	ID	EAS	TBOUN	D	NOR	THBOU	۷D	SOU	THBOU	ND	
	TOTALS	L	Т	R	L	Т	R	L	Т	R	L	Т	R	TOTAL
	4:00 - 4:15	8	243	80	72	252	14	11	50	14	125	47	79	995
	4:15 - 4:30	17	225	86	55	271	9	13	58	19	155	41	109	1,058
	4:30 - 4:45	11	221	91	60	221	15	23	48	26	106	47	60	929
	4:45 - 5:00	12	230	93	65	236	16	15	59	21	105	34	77	963
	5:00 - 5:15	11	245	113	87	250	16	16	50	18	110	43	65	1,024
	5:15 - 5:30	19	269	103	82	280	19	12	44	18	110	56	67	1,079
	5:30 - 5:45	15	277	112	77	255	14	16	49	15	113	60	101	1,104
L	5:45 - 6:00	9	265	93	61	199	17	12	41	21	104	63	96	981

1-HOUR	WE	STBOUN	ID	EAS	STBOUN	D	NOR	THBOUN	ID	SOU	THBOUN	ND	
TOTALS	L	Т	R	L	Т	R	L	Т	R	L	Т	R	TOTAL
4:00 - 5:00	48	919	350	252	980	54	62	215	80	491	169	325	3,945
4:15 - 5:15	51	921	383	267	978	56	67	215	84	476	165	311	3,974
4:30 - 5:30	53	965	400	294	987	66	66	201	83	431	180	269	3,995
4:45 - 5:45	57	1,021	421	311	1,021	65	59	202	72	438	193	310	4,170
5:00 - 6:00	54	1,056	421	307	984	66	56	184	72	437	222	329	4,188 *

Prepared by:

National Data & Surveying Services

N-S STREET: Winnetka Ave DATE: 3/24/2009 LOCATION: City of Woodland Hills

E-W STREET: US-101 WB Ramps DAY: TUESDAY PROJECT# 09-5108-014

	NO	ORTHBO	UND	S	OUTHBO	UND	E	ASTBOU	ND	W	/ESTBOL	JND	
LANES:	NL 1	NT 2	NR 0	SL 0	ST 2	SR 1	EL 0	ET 0	ER 0	WL 1.3	WT	WR 1.3	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM 7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM	20 24 43 32 44 35 24 35	64 141 214 243 218 143 153 119			201 252 248 275 230 189 188 211	101 102 127 95 116 100 114 91				52 63 78 127 71 77 66 73	0 0 0 1 1 1 1 7	61 96 145 136 135 131 97 99	499 678 855 909 815 676 643 635
TOTAL VOLUMES =	NL 257	NT 1295	NR 0	SL 0	ST 1794	SR 846	EL 0	ET 0	ER 0	WL 607	WT 11	WR 900	TOTAL 5710
AM Pea	ak Hr Be	egins at:	715	AM									
PEAK VOLUMES =	143	816	0	0	1005	440	0	0	0	339	2	512	3257
PEAK HR. FACTOR:		0.872			0.963			0.000			0.808		0.896
CONTROL .	Cianali												

Prepared by:

National Data & Surveying Services

N-S STREET: Winnetka Ave DATE: 3/24/2009 LOCATION: City of Woodland Hills

E-W STREET: US-101 WB Ramps DAY: TUESDAY PROJECT# 09-5108-014

	NC	ORTHBOU	JND	SC	OUTHBO	JND	E	ASTBOL	IND	W	ESTBO	JND	
LANES:	NL 1	NT 2	NR 0	SL 0	ST 2	SR 1	EL 0	ET 0	ER 0	WL 1.3	WT	WR 1.3	TOTAL
4:00 PM	53	192			202	63				61	0	143	714
4:15 PM	44	170			208	83				77	1	135	718
4:30 PM	50	205			161	72				72	11	134	705
4:45 PM	48	204			204	63				85	0	113	717
5:00 PM	36	203			125	36				52	3	76	531
5:15 PM	52	226			206	77				62	0	132	755
5:30 PM	57	242			192	79				79	0	179	828
5:45 PM	43	191			184	55				69	0	168	710
TOTAL	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
VOLUMES =	383	1633	0	0	1482	528	0	0	0	557	15	1080	5678

PM Peak Hr Begins at: 400 PM

PEAK														
VOLUMES =	195	771	0	0	775	281	0	0	0	295	12	525	2854	ı
			ŭ					•	•	-50		0_0		l
														l
PEAK HR.														ı
FACTOR:		0.947			0.907			0.000			0.959		0.994	l

Prepared by:

National Data & Surveying Services

N-S STREET: Winnetka Ave DATE: 3/24/2009 LOCATION: City of Woodland Hills

E-W STREET: US-101 EB Ramps DAY: TUESDAY PROJECT# 09-5108-015

	NO	ORTHBO	LIND	SC	OUTHBOU	IND	F	ASTBOL	IND	١٨	/ESTBOU	ND	
LANES:	NL 0	NT 2	NR 1	SL 1	ST 2	SR 0	EL 1	ET 0	ER 1	WL 0	WT 0	WR 0	TOTAL
6:00 AM 6:15 AM 6:30 AM 6:45 AM 7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM 9:00 AM 9:15 AM		41 80 151 168 187 94 79 99	42 47 31 53 62 34 48 54	144 129 87 108 128 101 86 101	111 184 241 291 175 163 171 179		45 83 107 105 79 81 100 54		57 65 55 45 52 63 66 49				440 588 672 770 683 536 550 536
TOTAL VOLUMES =	NL 0	NT 899	NR 371	SL 884	ST 1515	SR 0	EL 654	ET 0	ER 452	WL 0	WT 0	WR 0	TOTAL 4775
AM Pea	k Hr Be	gins at:	715	AM									
PEAK VOLUMES = PEAK HR. FACTOR:	0	586 0.782	193	452	891 0.841	0	374	0 0.912	217	0	0.000	0	2713 0.881

Prepared by:

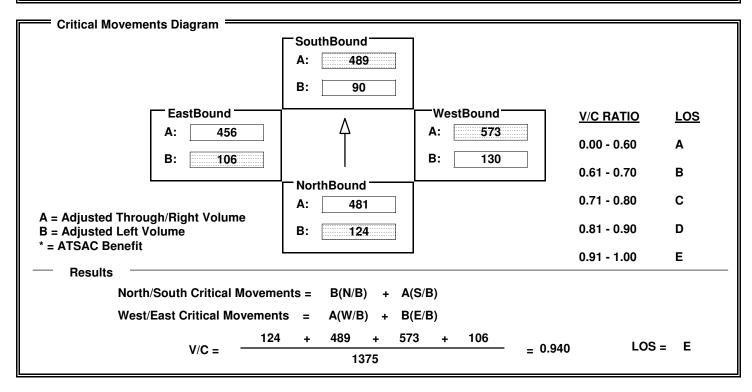
National Data & Surveying Services

N-S STREET: Winnetka Ave DATE: 3/24/2009 LOCATION: City of Woodland Hills

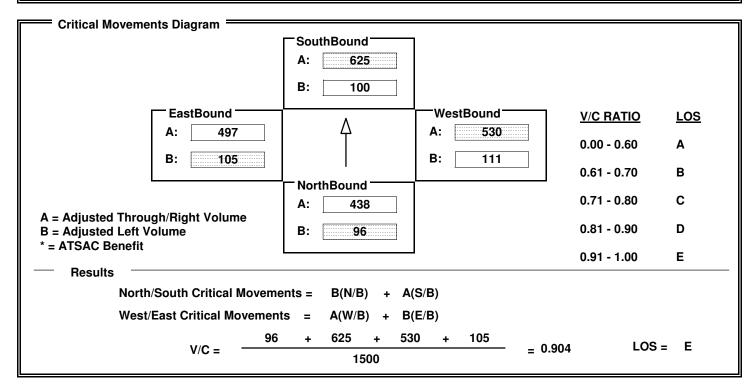
E-W STREET: Ventura Blvd DAY: TUESDAY PROJECT# 09-5108-016

	NC	RTHBO	UND	SO	UTHBO	UND	E	ASTBOU	ND	W	ESTBOL	IND	
LANES:	NL 1	NT 1	NR 0	SL 2	ST 1	SR 1	EL 1	ET 3	ER 0	WL 1	WT 2	WR 1	TOTAL
4:00 PM	23	93	13	65	55	64	72	203	18	18	162	62	848
4:15 PM	19	70	7	77	63	61	62	210	27	9	192	55	852
4:30 PM	22	84	7	71	85	57	65	223	18	15	184	67	898
4:45 PM	25	88	14	60	78	59	64	184	26	17	191	54	860
5:00 PM	24	86	12	78	68	37	84	211	23	18	143	59	843
5:15 PM	24	86	9	64	66	61	62	229	28	22	197	74	922
5:30 PM	32	128	12	74	104	46	74	221	34	16	200	71	1012
5:45 PM	15	78	6	55	93	51	70	207	15	28	164	85	867
TOTAL VOLUMES =	NL 184	NT 713	NR 80	SL 544	ST 612	SR 436	EL 553	ET 1688	ER 189	WL 143	WT 1433	WR 527	TOTAL 7102

PM Peak Hr Begins at: 500 PM


PEAK														
VOLUMES =	95	378	39	271	331	195	290	868	100	84	704	289	3644	ı
10201120	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3,0	0,5		551	133		000	100		,		30	i
DEALCHD														l
PEAK HR.														l
FACTOR:		0.744			0.890			0.956			0.919		0.900	l

APPENDIX C INTERSECTION LEVEL OF SERVICE WORKSHEETS


N/S:	De Soto Ave	W/E:	Saticoy St	I/S No: 1
AM/PM: AM	Comment	s: Existing		
COUNT DATE	::	STUDY DATE:	GROW	TH FACTOR:

Volume	/Lane/Sig	nal Confi	guration	ıs ====									
	NOF	THBOUN	ID	SO	UTHBOU	ND	, 1	WE	STBOU	ND	E/	ASTBOU	ND
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	124	841	120	90	1329	138		130	1080	65	106	834	78
AMBIENT													
RELATED													
PROJECT													
TOTAL	124	841	120	90	1329	138] [130	1080	65	106	834	78
LANE	ή _β γ	\$\frac{1}{4} \frac{1}{4}		, ,	↑ ♠ ↑ 2 1				↑ ♠ ↑ 1 1	<u>ү</u> ү ф	f 分	个	<u>}</u>
	Phasing	g R	TOR	Phasir	ng F	RTOR		Phasin	ig l	RTOR	Phasir	ng	RTOR
SIGNAL	Prot-Fi	x A	luto	Prot-F	ix	Auto] [Perm	1	Auto	Prot-F	ix	Auto
ĺ													

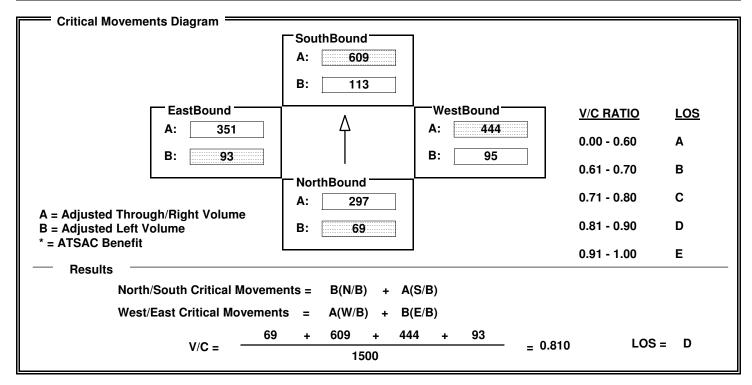
N/S:	Mason Ave	W/E:	Saticoy St	I/S No:	2
AM/PM: AM	Comments	Existing			
COUNT DATE	≣:	STUDY DATE:	GROWT	TH FACTOR:	

Volume	e/Lane/Sig	nal Confi	guratior	ıs									
	NOF	RTHBOUN	ID	SO	UTHBOU	ND		WESTE	BOUND		EA	STBOU	ND
	LT	TH	RT	LT	TH	RT	Lī			RT	LT	TH	RT
EXISTING	96	798	77	100	1135	114	11	1 9	77	82	105	905	88
AMBIENT													
RELATED													
PROJECT													
TOTAL	96	798	77	100	1135	114	11	1 97	77	82	105	905	88
LANE	f 分 2		↑ 4 _↑	1	个		ή _δ	↑ ↑ (\$ \$\frac{1}{4}\$	lγ (4tγ	f 矿	1	1
	Phasin	g F	TOR	Phasir	ng F	RTOR	Ph	asing	RTO	OR	Phasin	ıg	RTOR
SIGNAL	Perm		Auto	Perm	1	Auto	Р	erm	Au	to	Perm	1	Auto
SIGNAL	Perm		Auto	Perm	1	AUTO	_ P	erm	Au	(O	Perm		Auto

N/S:	Winnetka Ave	W/E:	Saticoy St	I/S No:	3
AM/PM: AN	Comments:	Existing			
COUNT DAT	E:	STUDY DATE:	GROWT	H FACTOR:	

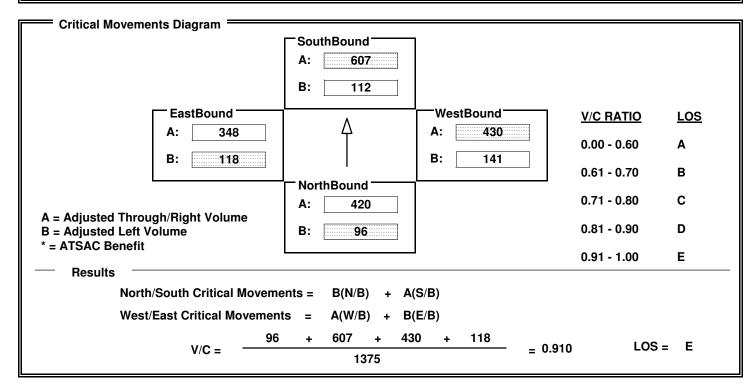
Volume	e/Lane/Sig	gnal Conf	iguratior	ıs ====								
	NO	RTHBOU	ND	SO	UTHBOU	ND	V	VESTBOU	ND	E/	STBOU	ND
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	104	765	114	123	1090	120	92	896	125	107	819	123
AMBIENT												
RELATED												
PROJECT												
TOTAL	104	765	114	123	1090	120	92	896	125	107	819	123
LANE	f	个	; rÞ 4πÞ	, N	수 🚓 수 2	\$	∮ ∰	个	1	f 分	↑ ♠ ↑ 1 -	
	Phasir	ng F	RTOR	Phasi	ng I	RTOR	Phas	ing	RTOR	Phasir	ng	RTOR
SIGNAL	Perm	1	Auto	Pern	n .	Auto	Per	m	Auto	Perm	1	Auto
SIGNAL	I GIII	•	Auto	rem		Auto	i Ci		Auto	rem		Auto

Critical Movements Diagram				
·	SouthBound A: 545 B: 123			
EastBound	Λ	WestBound	V/C RATIO	LOS
A: 471 B: 107	T T	A: 511 B: 92	0.00 - 0.60	Α
	NorthBound	B. 92	0.61 - 0.70	В
A Adjusted Through/Dight Volume	A: 440		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 104		0.81 - 0.90	D
* = ATSAC Benefit Results			0.91 - 1.00	E
North/South Critical Movement	ents = B(N/B) + A((S/B)		
West/East Critical Movemen	` ,	(E/B)		
	` ,			
V/C = - 104	4 + 545 + 51 1500	1 + 107 = 0.845	5 LOS =	D

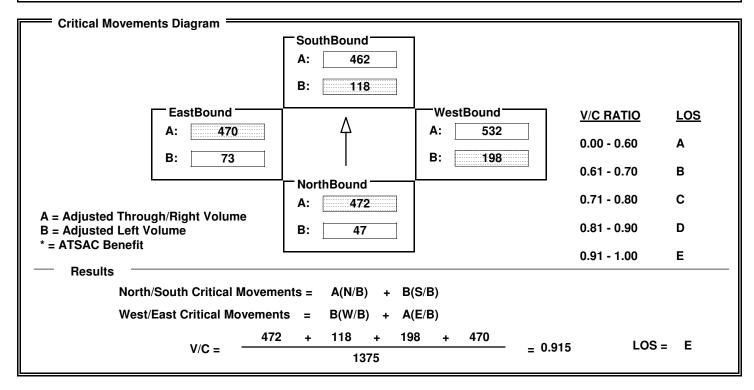

N/S:	De Soto Ave	W/E:	Sherman Way	I/S No:	4
AM/PM: AM	Comm	nents: Existing			
COUNT DATE	: :	STUDY DATE:	GROW	TH FACTOR:	

Volume	/Lane/Sig	nal Confi	guration	ıs ====								
	NO	RTHBOUN	ID.	SO	UTHBOU	ND	W	/ESTBOU	ND	E/	ASTBOUN	ID
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	80	863	87	103	1515	151	166	1106	106	90	1083	84
AMBIENT												
RELATED												
PROJECT												
TOTAL	80	863	87	103	1515	151	166	1106	106	90	1083	84
LANE	f 分 4	↑ ♠ ∳ 1		, v	个		竹 於 1	☆☆ ☆	<u>}</u>	∮ ∰	↑ ♠ ↑ 2 1	
	Phasin	g R	TOR	Phasii	ng I	RTOR	Phas	ing l	RTOR	Phasi	ng	RTOR
SIGNAL	Perm		Auto	Pern	n .	Auto	Prot-	Fix	Auto	Prot-F	ix	Auto

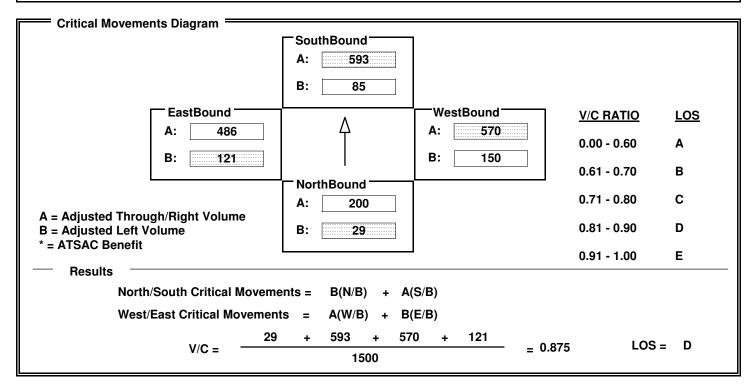
Critical Movements Diagram				
onnou moromonto Diagram	SouthBound A: 5555 B: 103			
EastBound —	1 ^	WestBound	V/C RATIO	LOS
A: 389 B: 90		A: 404 B: 166	0.00 - 0.60	A
	<u> </u>		0.61 - 0.70	В
A Adinated Through/Dight Volume	NorthBound A: 475		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 80		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = $B(N/B) + A($	S/B)		
West/East Critical Movemen	its = $B(W/B) + A($	E/B)		
V/C - 80	+ 555 + 16	6 + 389 _{= 0.835}	LOS =	D
V/C =	1425	= 0.033		_


N/S:		Mason Ave)	W/E:	Sher	man Way	I/S No:	5
AM/PI	M: AM		Comments: E	xisting				
cou	NT DATE:		STU	JDY DATE:		GROW	TH FACTOR:	

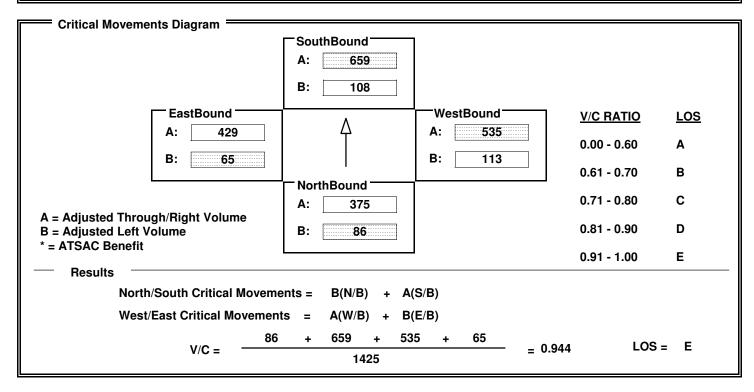
- Volume	e/Lane/Sig	inal Confi	auration										
Volume	s/Lane/Sig	iliai Collii	guration	13									
	NO	RTHBOUN	ND.	SO	UTHBOU	ND	I	W	STBOU	VD	E	ASTBOU	ND
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	69	551	42	113	1079	139		95	1239	92	93	985	69
AMBIENT													
RELATED							Ī						
PROJECT							Ī						
									1				
TOTAL	69	551	42	113	1079	139		95	1239	92	93	985	69
LANE	4	个 命 句 1 1	lþ (∏þ	句 分	个	<u> </u>		N I	个 命 仓 2 1		∯ ∰ 1	个	1
	Phasin	g F	TOR	Phasii	ng l	RTOR		Phasir	ng l	RTOR	Phasii	ng	RTOR
SIGNAL	Perm	1	Auto	Pern	n	Auto		Perm	1	Auto	Pern	n	Auto


N/S:	Winnetka Ave	W/E:	Sherman Way	I/S No:	6
AM/PM: AN	Comments:	Existing			
COUNT DAT	E:	STUDY DATE:	GROWT	H FACTOR:	

Volume	/Lane/Sig	nal Confi	guration	s ====								
	NOF	THBOUN	ID	SO	UTHBOU	ND	W	ESTBOUN	ND	E/	STBOUN	ND.
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	96	752	88	112	1214	115	141	1104	187	118	906	138
AMBIENT												
RELATED												
PROJECT												
TOTAL	96	752	88	112	1214	115	141	1104	187	118	906	138
LANE	h 分子 1 1 1	\$\frac{1}{4}\frac{1}{2}	Γ ◊ 4 _Τ ◊	, v	↑ ∰ † 2	1 I	∯ ∰ 1	↑ ♠ ↑ 2 1		ή ή· 1	↑ ∰ ↑ 2 1	
SIGNAL	Phasing		TOR Auto	Phasir Prot-F		RTOR Auto	Phasii Prot-F		RTOR Auto	Phasir Prot-F		RTOR Auto


N/S:	De Soto Ave	W/E:	Vanowen St	I/S No:	7
AM/PM: AM	Comments:	xisting			
COUNT DATE:	ST	UDY DATE:	GRO	OWTH FACTOR:	

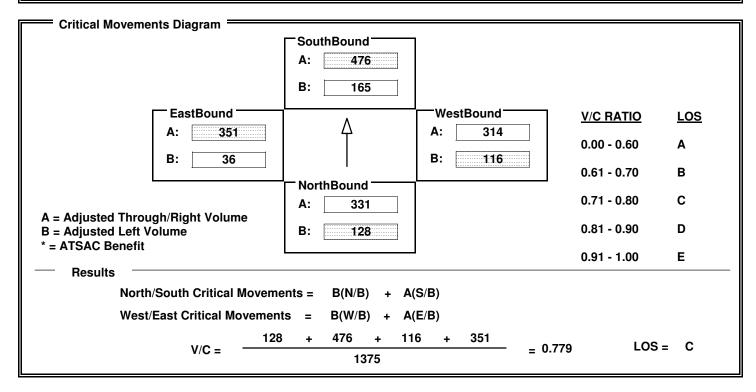
Volume	/Lane/Sid	gnal Conf	iguration	s ====									
	,,	g	.9										
	NO	RTHBOU	ND	SO	UTHBOU	ND		W	STBOU	ND		ASTBO	JND
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	47	843	100	118	1214	173		198	1064	110	73	940	69
AMBIENT													
RELATED													
PROJECT													
TOTAL	47	843	100	118	1214	173		198	1064	110	73	940	69
LANE	4 A	个 命 句 1 1		N N	수 命 行 2 1				全	1	փ ∰ 1	↑ ∰ 2	Ŷ Þ ₩ 1
SIGNAL	Phasir Prot-F		RTOR Auto	Phasii Prot-F		RTOR Auto		Phasir Prot-F	<u> </u>	RTOR OLA	Phas Prot		RTOR Auto
CIGITAL	1101-1	<u> </u>	Auto	110(-1	IA	Auto	L	1 101-1	IA	OLA	1100	1 1/	Auto


N/S: [Mason Ave	•	W/E:	Van	owen St	I/S No:	8
AM/PI	M: AM		Comments: E	xisting				
cou	NT DATE:		STU	JDY DATE:		GROV	VTH FACTOR:	

Volume	/Lane/Sig	gnal Conf	iguration	ıs ====										
	NO	RTHBOU	VD.	SO	UTHBOL	JND		W	ESTBOUN	ND	EASTBOUND			
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT	
EXISTING	29	355	45	85	991	194		150	1050	90	121	893	78	
AMBIENT														
RELATED														
PROJECT														
TOTAL	29	355	45	85	991	194	•	150	1050	90	121	893	78	
LANE	4 A	↑ ♠ ♠ 1 1	_ LÞ 4 T Þ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	个 命 ⁴ 1 1		փ 1	F	个 命 句 1		1 P	↑ ♣ ⁴	β β Φβ 1	
	Phasir	ng F	RTOR	Phasir	ng	RTOR	F	Phasii	ng I	RTOR	Phas	ing	RTOR	
SIGNAL	Perm	1	Auto	Perm	1	Auto		Pern	1	Auto	Per	m	Auto	

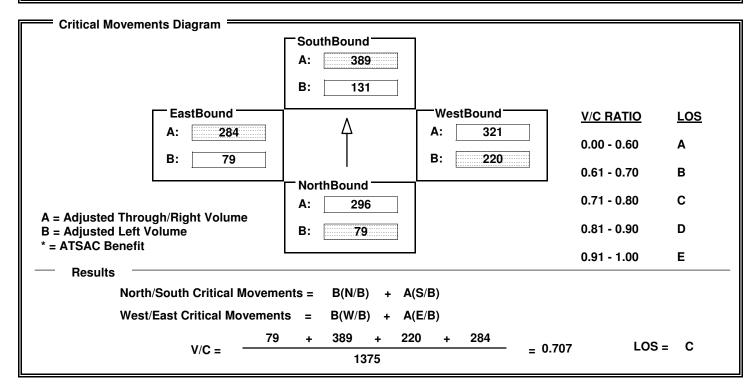
N/S:	Winnetka Ave	W/E:	Vanowen St	I/S No:	9
AM/PM: AM	Comments:	Existing			
COUNT DATE:	S	TUDY DATE:	GROWT	H FACTOR:	

Volume	/Lane/Sig	nal Confi	guration	s ====								
	NO	RTHBOUN	ID	SO	UTHBOU	ND	WE	STBOU	ND	E/	STBOUN	ND.
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	86	652	97	108	1184	133	113	977	92	65	776	81
AMBIENT												
RELATED												
PROJECT												
TOTAL	86	652	97	108	1184	133	113	977	92	65	776	81
LANE	փ 👉 ′	↑ ♠ ₲ 1	Γ ◊	1	个 _命 仓 1 1		1	个 _命 仓 1 1		♠ ♠	个	
	Phasin	g R	TOR	Phasir	ng I	RTOR	Phasin	ng I	RTOR	Phasir	ng	RTOR
SIGNAL	Prot-F	ix A	Auto	Prot-F	ix	Auto	Perm	1	Auto	Perm	1	Auto

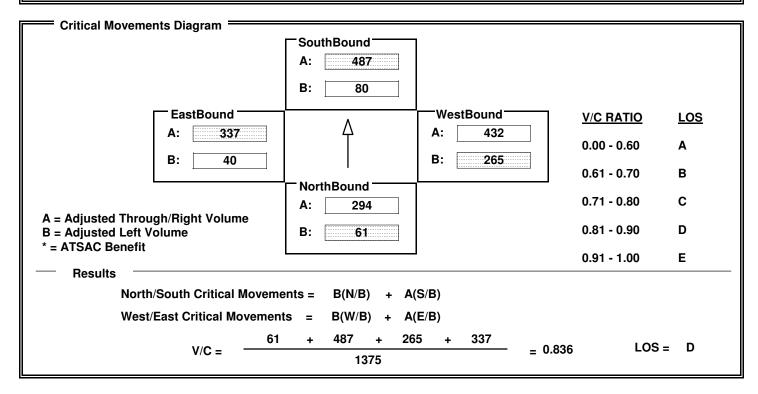

N/S:		Shoup Ave		W/E:	Vict	tory Bl	I/S No:	10
AM/PI	M: AM		Comments: E	xisting				
cou	NT DATE:		STU	JDY DATE:		GRO	WTH FACTOR:	

── Volume	/l ana/Sia	unal Canf	aurotion	. ===								
Volume	e/Lane/Sig	Jilai Colli	iguratioi	15								
	NO	RTHBOU	ND	SO	SOUTHBOUND			WESTBOL	IND	E/	ASTBOUN	1D
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	99	704	47	128	1269	73	101	722	79	97	892	260
AMBIENT												
RELATED												
PROJECT												
											1	
TOTAL	99	704	47	128	1269	73	101	722	79	97	892	260
LANE	f 矿 '	↑ 命 \$ 1 1	lp (Hp	句 分	个	<u></u>	ी (1)	· 个 命 ·	ή μ ψ 1 1	∮ ∰	个 命 仓 1 1	1
	Phasin	ng F	RTOR	Phasii	ng I	RTOR	Pha	sing	RTOR	Phasir	ng	RTOR
SIGNAL	Perm	1	Auto	Pern	n	Auto	Pe	rm	Auto	Perm	1	Auto

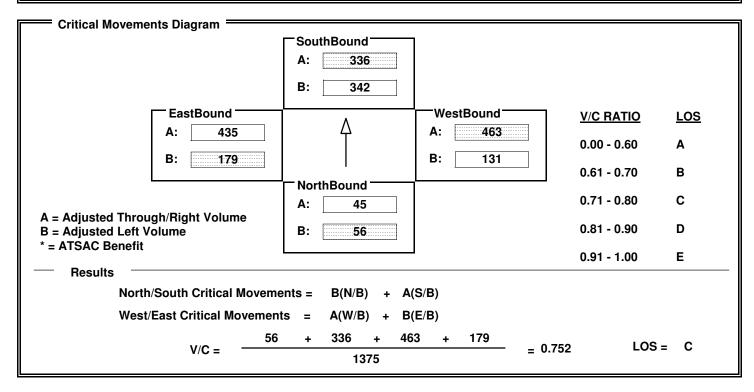
Critical Movements Diagram										
SGai moromona Biagiani	SouthBound A: 671 B: 128									
EastBound —	1 ^	WestBound	V/C RATIO	<u>LOS</u>						
A: 576 B: 97		0.00 - 0.60	A							
	<u> </u>	B: 101	0.61 - 0.70	В						
A Adiosal Thomas (Biola V.	NorthBound A: 376		0.71 - 0.80	С						
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 99		0.81 - 0.90	D						
* = ATSAC Benefit			0.91 - 1.00	E						
Results										
North/South Critical Movements = B(N/B) + A(S/B)										
West/East Critical Movemen	its = $B(W/B)$ + $A($	E/B)								
V/C = 99	+ 671 + 10	1 + 576 = 0.965	LOS =	E						
V/C =	1500	⊒ 0.903		_						


N/S: Topanga	Canyon BI	W/E:	Victory BI	I/S No:	11
AM/PM: AM	Comments:	Existing			
COUNT DATE:	ST	UDY DATE:	GROV	WTH FACTOR:	

NORTHROU												
	NORTHBOUND			SOUTHBOUND			WESTBOUND			EASTBOUND		
TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT		
3 799	193	165	1325	102	211	628	115	65	936	117		
3 799	193	165	1325	102	211	628	115	65	936	117		
				, ID (HD			1 I	N N	↑ ♠ ၺ 2 1	, rb 4tb		
sing f	RTOR	Phasin	g F	RTOR	Phasin	g I	RTOR	Phasir	ng	RTOR		
t-Fix	Auto	Prot-Fi	ix	Auto	Prot-F	ix	OLA	Prot-F	ix	Auto		
- E	8 799 	8 799 193 	8 799 193 165 165 165 165 165 165 165 165 165 165	8 799 193 165 1325 1325 1325 1325 1325 1325 1325 132	8 799 193 165 1325 102	8 799 193 165 1325 102 211	8 799 193 165 1325 102 211 628 102 102 11 628 102 102 11 628 102 102 11 628 102 102 11 628 102 102 11 628 102 102 11 628 102 11 628 102 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 799 193 165 1325 102 211 628 115 102 11 628 115 102 11 628 115 102 11 628 115 102 11 628 115 102 11 628 115 102 11 628 115 102 11 628 115 102 11 628 115 102 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 799 193 165 1325 102 211 628 115 65 1325 102 211 628 115 65 1325 102 211 628 115 65 1325 102 211 628 115 65 1325 102 211 628 115 65 1325 102 211 628 115 65 1325 102 211 628 115 65 1325 102 211 628 115 65 1325 102 211 628 115 65 1325 102 211 628 115 65 12 12 12 12 12 12 12 12 12 12 12 12 12	8 799 193 165 1325 102 211 628 115 65 936 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		


N/S:	Canoga Ave	W/E:	Victory BI	I/S No:	12
AM/PM: AM	Comments:	Existing			
COUNT DAT	E: S	TUDY DATE:	GROV	VTH FACTOR:	

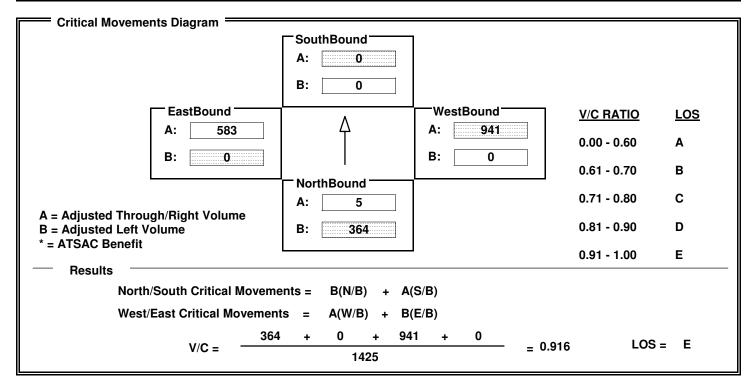
Volume	/Lane/Sig	nal Config	guration	s ====									
	NORTHBOUND			SO	SOUTHBOUND			WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	79	794	94	131	1091	77	220	963	63	79	853	137	
AMBIENT													
RELATED													
PROJECT													
TOTAL	79	794	94	131	1091	77	220	963	63	79	853	137	
LANE	ή ₄ ή 1 2	N / /	lþ d√þ	, v	수 _仲 수 2 1	<u>}</u>	∮ ∰	↑ ♠ ↑ 3	\(\frac{1}{2}\) \(\frac{1}{2}\)	f 分 1	3	1 I	
	Phasing	g Ri	ΓOR	Phasir	ng l	RTOR	Phasi	ng	RTOR	Phasi	ng	RTOR	
SIGNAL	Prot-Fi	x A	uto	Prot-F	ix	Auto	Prot-F	ix	OLA	Prot-F	ix	OLA	
SIGNAL	Prot-Fi	x A	uto	Prot-F	ix	Auto	Prot-F	ix	OLA	Prot-F	ix	OLA	


N/S:	De Soto Ave	W/E:	Victory BI	I/S No:	13
AM/PM: AM	Comments:	Existing			
COUNT DATE	:	STUDY DATE:	GROWTH	I FACTOR:	

Volume	/Lane/Sig	nal Conf	iguration	ns ====								
			9									
	NORTHBOUND SOUTHBOUND				ND	W	ESTBOUN	ND	EASTBOUND			
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	61	742	140	80	1286	174	482	1296	96	72	963	47
AMBIENT												
RELATED												
PROJECT												
TOTAL	61	742	140	80	1286	174	482	1296	96	72	963	47
LANE	4 A 4		lb d⊥b	N N	个 点 句 2 1		4 分 2	↑ ∰ ¼ 3	1	4 2	个	
	Phasin	g F	RTOR	Phasir	ng F	RTOR	Phasi	ng F	RTOR	Phasir	ng	RTOR
SIGNAL	Prot-Fi	X	Auto	Prot-F	ix	Auto	Prot-I	Fix <	none>	Prot-F	ix	Auto

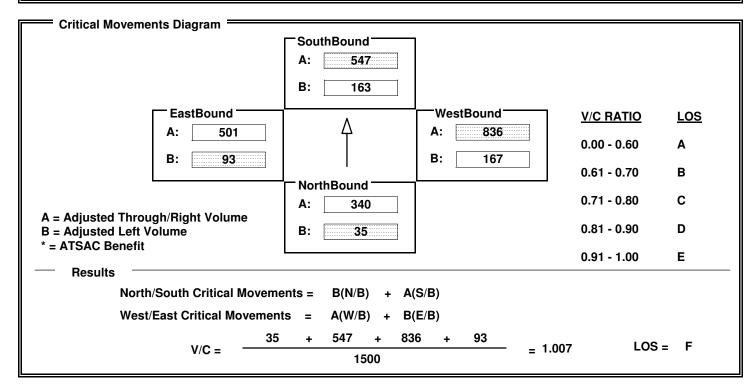
N/S:	Mason Ave	W/E:	Victory BI	I/S No:	14
AM/PM: AM	Comments:	Existing			
COUNT DATE	s: s	TUDY DATE:	GROW	TH FACTOR:	

Volume	/Lane/Sign	al Configu	rations										
	NORT	HBOUND		SO	UTHBOL	IND	W	WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	56	60	30	342	305	610	131	1389	106	179	1304	188	
AMBIENT													
RELATED													
PROJECT													
TOTAL	56	60	30	342	305	610	131	1389	106	179	1304	188	
LANE	↑		₩	1 1	↑ ♠ ↑ 1	2 2	∮ ∱	分	1	ή Δ	分	1 I	
	Phasing	RTC)R	Phasin	ıg	RTOR	Phasii	ng F	RTOR	Phasir	ng	RTOR	
SIGNAL	Prot-Fix	Au	to	Prot-F	ix <	none>	Prot-F	ix <	none>	Prot-F	ix	Auto	

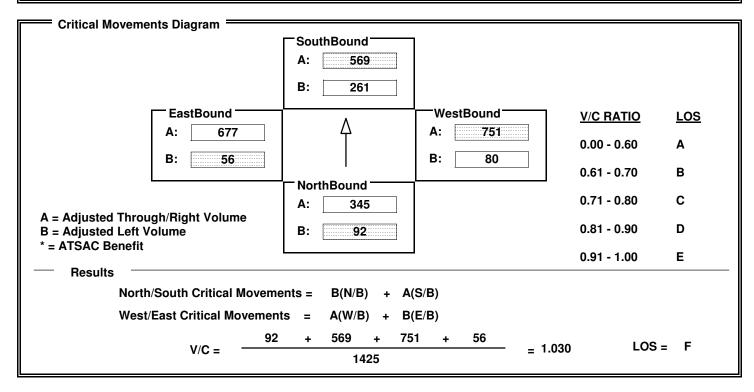

N/S:	Winnetka Ave	W/E:	Victory BI	I/S No:	15
AM/PM: AN	Comments:	Existing			
COUNT DAT	E: S	TUDY DATE:	GROWT	H FACTOR:	

Volume	e/Lane/Sig	gnal Conf	iguration	ıs ====										
	NO	RTHBOU	ND	SO	SOUTHBOUND			WESTBOUND			E	EASTBOUND		
	LT	TH	RT	LT	TH	RT		т.	TH	RT	LT	TH	RT	
EXISTING	121	785	188	217	1035	225	3	12	1455	66	60	1190	226	
AMBIENT														
RELATED														
PROJECT														
TOTAL	121	785	188	217	1035	225	3	12	1455	66	60	1190	226	
LANE	有	↑ ♠ ф 1 1	<u> </u>		个		փ 1	N .	수 슈 イ 2 1		∮ ∳	个		
	Phasir	ng F	RTOR	Phasii	ng I	RTOR	Р	hasir	ng	RTOR	Phasi	ng	RTOR	
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto	P	rot-F	ix	Auto	Prot-F	Fix	Auto	

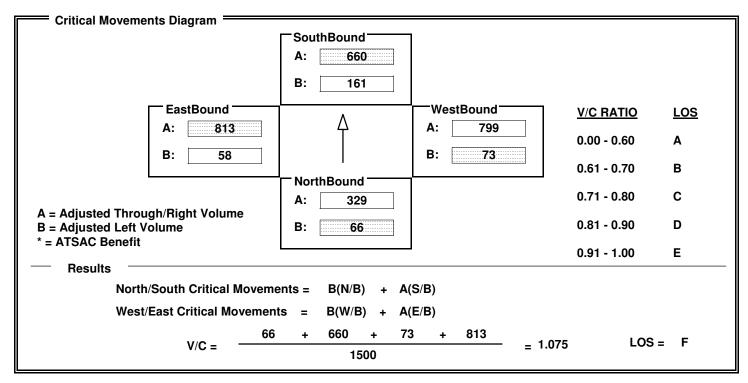
Critical Movements Diagram				
	SouthBound A: 420 B: 217			
EastBound	Λ	WestBound	V/C RATIO	<u>LOS</u>
A: 472 B: 60		A: 507 B: 312	0.00 - 0.60	A
B		J	0.61 - 0.70	В
A Adjusted Through/Dight Volume	NorthBound A: 487		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 121		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = $A(N/B) + B($	S/B)		
West/East Critical Movemen	ts = B(W/B) + A(E/B)		
V/C = 487	+ 217 + 31 1375	2 + 472 = 1.082	LOS =	F


N/S:	Topha	am St	W/E:	Victory BI		I/S No:	16
AM/PI	M: AM	Comments:	Existing				
COU	NT DATE:	S	TUDY DATE:		GROWTH FA	CTOR:	

Volume	/Lane/Signa	l Configuration	ns ———							
	NORTI	IBOUND	SOUTH	BOUND	WE	STBOUND	E/	EASTBOUND		
	LT	TH RT	LT T	H RT	LT	TH RT	LT	TH RT		
EXISTING	364	0 5	0 (0 0	0	1882 0	0	1166 428		
AMBIENT										
RELATED										
PROJECT										
TOTAL	364	0 5	0 (0 0	0	1882 0	0	1166 428		
LANE	η ← ←1 	<u></u>	4 & 7 4		4 £ 4		ф П	↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑		
	Phasing	RTOR	Phasing	RTOR	Phasin	g RTOR	Phasii	ng RTOR		
SIGNAL	Prot-Fix	<none></none>	Prot-Fix	Auto	Perm	Auto	Pern	n OLA		


N/S:	Corbin Ave	W/E:	Victory BI	I/S No:	17
AM/PM: AM	Comments:	Existing			
COUNT DATE:	ST	UDY DATE:	GROWT	H FACTOR:	

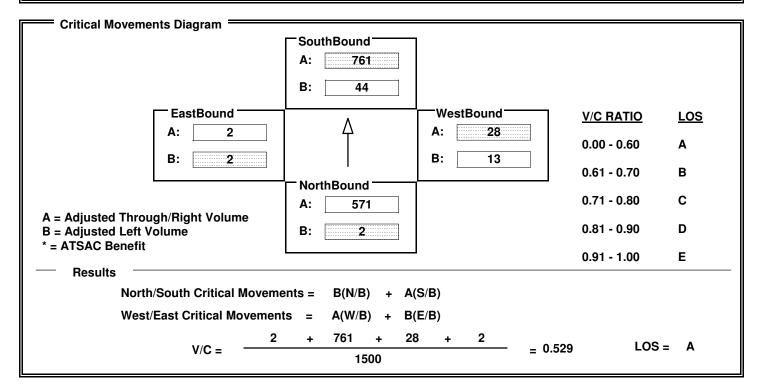
Volume	/Lane/Sig	nal Confi	guration	ıs <u> </u>									
	NOF	RTHBOUN	D	SO	SOUTHBOUND			WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	35	589	90	163	784	309		167	1517	154	93	987	15
AMBIENT													
RELATED													
PROJECT													
TOTAL	35	589	90	163	784	309		167	1517	154	93	987	15
LANE	4 A	→ → → I	lþ (d⊅		↑ ♠ ↑ 1 1	<u> </u>			↑ ♠ ႖ 1 1	, t ₂ d ₄ 2	∮1	1	↑ ↑ ↑ 1
	Phasing	g R	TOR	Phasir	ng l	RTOR		Phasin	ıg l	RTOR	Phasi	ng	RTOR
SIGNAL	Perm	A	uto	Perm	1	Auto		Perm		Auto	Perr	n	Auto


N/S:	Tampa Ave	W/E:	Victory BI	I/S No:	18
AM/PM: AM	Comments: E	xisting			
COUNT DATE:	ST	JDY DATE:	GRO	OWTH FACTOR:	

Volume	e/Lane/Si	gnal Conf	iguration	ıs ——									
	NO	RTHBOU	ND	SO	SOUTHBOUND			WESTBOUND			FASTBOUND		
	LT	TH	RT	LT	TH	RT	. –	LT	TH	RT	LT	TH	RT
EXISTING	92	690	107	261	1138	225		80	1414	87	56	1310	43
AMBIENT													
RELATED													
PROJECT													
TOTAL	92	690	107	261	1138	225		80	1414	87	56	1310	43
LANE	∮ ∰ 1 1	↑ ♠ ↑ 2	\$, v	↑ ♠ ↑ 2	1		ճ 🔑 ′ 1	个 命 行 1 1	<u>ф</u> ф ф	∮ ₽	个	Å ↑ ₩ 1
	Phasii	ng I	RTOR	Phasii	ng l	RTOR		Phasin	ıg	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto		Perm	1	Auto	Pern	n	Auto

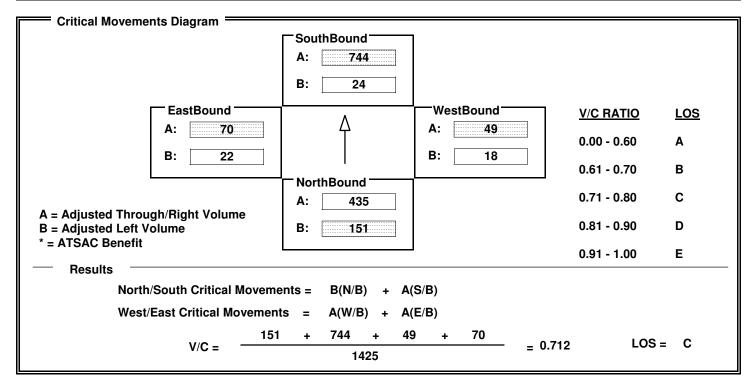
N/S:		Wilbur Ave	W/E:	Victory BI	I/	/S No:	19
AM/P	M: AM	Comments:	xisting				
COU	NT DATE:	ST	UDY DATE:		GROWTH FAC	TOR:	

Volume	e/Lane/Sid	gnal Conf	iguration	ıs ====									
l ciami	<i>5,</i> 2 00, 0 .,	ga. 00	gurunoi										
	NO	RTHBOU	VD.	SO	UTHBOU	ND	ıl	W	ESTBOU	ND	E	ASTBOUN	ID
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	66	564	93	161	1162	158		73	1493	105	58	1511	115
AMBIENT													
RELATED													
PROJECT													
TOTAL	66	564	93	161	1162	158		73	1493	105	58	1511	115
LANE	4	个	ly (Hy	ή Δ	个			փ ₍	个	<u>ф</u> ф ф	ή _φ τ 1	个	<u>}</u>
	Phasir	ng F	RTOR	Phasi	ng l	RTOR		Phasir	ng l	RTOR	Phasi	ng	RTOR
SIGNAL	Perm	1	Auto	Pern	n .	Auto		Pern	n	Auto	Perr	n	Auto


N/S:	Re	seda Bl	W/E:	Victory BI		I/S No:	20
AM/P	M: AM	Comments: E	xisting				
COU	NT DATE:	ST	UDY DATE:		GROWTH FA	CTOR:	

- Volume	e/Lane/Sig	anal Conf	iauration	. ===									
Volume	:/Lane/Siç	gilai Colli	iguratioi	15									
	NO	RTHBOU	ND	SO	UTHBOU	ND	Ε	W	STBOU	VD.	E	ASTBOUN	D
	LT	TH	RT	LT	TH	RT	ļļ	LT	TH	RT	LT	TH	RT
EXISTING	70	733	118	103	1000	168		92	1374	108	102	1667	68
AMBIENT													
RELATED							Ī						
PROJECT													
		1			1								
TOTAL	70	733	118	103	1000	168		92	1374	108	102	1667	68
LANE	4 A	个 命 句 1 1	;	f 分	个 命 句 1 1	↑ ♦ ♦		N I	↑ ♠ ↑ 2	<u>†</u>	∯ ∯ 1	个	, IÞ 4HÞ
	Phasir	ng I	RTOR	Phasi	ng l	RTOR		Phasir	ng l	RTOR	Phasir	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	Fix	Auto		Prot-F	ix	Auto	Prot-F	ix	Auto

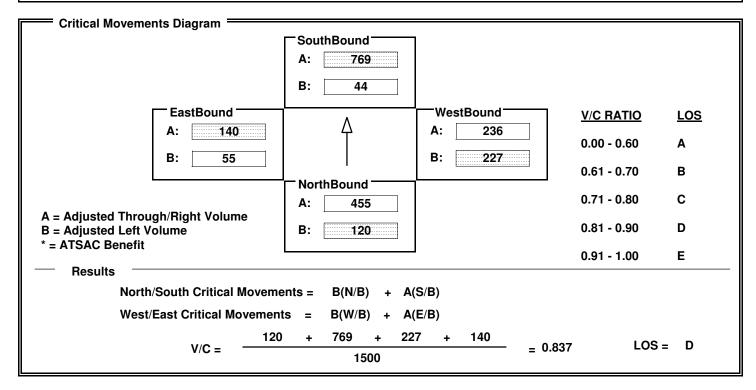
Critical Movements Diagram				
	SouthBound A: 584 B: 103			
EastBound —	Λ	WestBound	V/C RATIO	<u>LOS</u>
A: 578 B: 102		A: 687 B: 92	0.00 - 0.60	A
5. 102	L., ., <u>,</u> '	5. 52	0.61 - 0.70	В
A Adimated Threewall /Dight Volume	NorthBound A: 426		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 70		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = $B(N/B) + A($	S/B)		
West/East Critical Movemen	ts = $A(W/B)$ + $B($	E/B)		
70	+ 584 + 68	7 + 102 = 1.049	LOS =	F
V/C =	1375	= 1.049	230 -	•


N/S:	De Soto Ave	W/E:	El Rancho Dr	I/S No:	21
AM/PM: AM	Comments:	xisting			
COUNT DATE:	ST	UDY DATE:	GROWT	H FACTOR:	

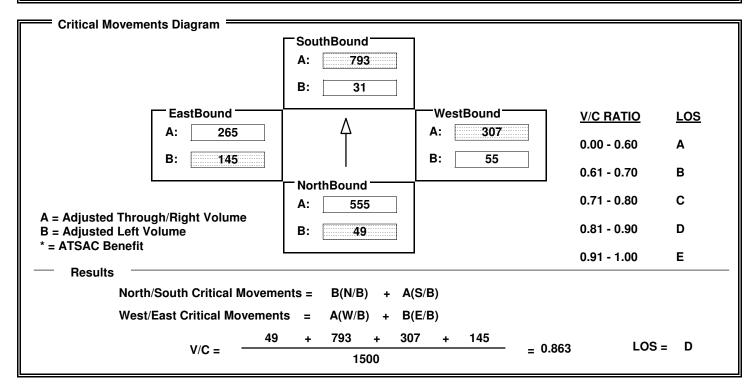
Volume	e/Lane/Sig	nal Confi	iguratior	ıs ——								
		RTHBOUN		_	SOUTHBOUND			ESTBOUN	ND	E#	ASTBOUN	ND
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	2	1586	127	44	2282	0	13	0	28	2	0	2
AMBIENT											<u>"</u>	
RELATED											<u> </u>	
PROJECT												
TOTAL	2	1586	127	44	2282	0	13	0	28	2	0	2
LANE		↑ ♠ ♠ 2 1			↑ ♠ ♠ 2 1	Lb 44b	¶ 分 1	个 余 仓 1	<u>}</u>	♠ ☆ 1	个 _余 仓	\(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\)
	Phasin	ıg F	RTOR	Phasir	ng F	RTOR	Phasi	ng I	RTOR	Phasir	ıg	RTOR
SIGNAL	Perm	1 /	Auto	Perm	n /	Auto	Pern	n .	Auto	Perm	1 <	<none></none>


N/S:		De Soto Ave	W/E:	Erwin St	I/S No	: 22
AM/PN	AM	Comm	ents: Existing			
COUN	IT DATE:		STUDY DATE:		GROWTH FACTOR:	

Volume	/I ana/Si	gnal Confi	iauration	·									
Volume	or Larier Si	giiai ooiiii	iguratioi	13									
	NO	RTHBOU	VD.	SO	UTHBOU	ND		WES	STBOU	ND	E	STBOU	ND
	LT	TH	RT	LT	TH	RT	L	Т	TH	RT	LT	TH	RT
EXISTING	151	1299	5	24	2077	156	1	8	10	21	22	2	137
AMBIENT													
RELATED													
PROJECT													
												1	
TOTAL	151	1299	5	24	2077	156	1	8	10	21	22	2	137
		•											
	¶ ₽	个 命 仓	₽ ₩	ላ ∂	个 命 行	4 }	ή,	م م	· 於 <	Ch th	∮	ት 🚓 ጎ	4 4
LANE	1	2 1		1	2 1			<u> </u>	1		1	1	1
			 										
	Phasir	ng F	RTOR	Phasi	ng	RTOR	Ph	nasing	3	RTOR	Phasir	ng	RTOR
SIGNAL	Pern	n /	Auto	Perr	n	Auto	9	Split		Auto	Split		Auto


N/S:		Winnetka A	ve	W/E:	Brahma	Dr/Calvert St	I/S No:	23
AM/PI	M: AM		Comments: E	xisting				
COU	NT DATE:		ST	UDY DATE:		GROWTH	H FACTOR:	

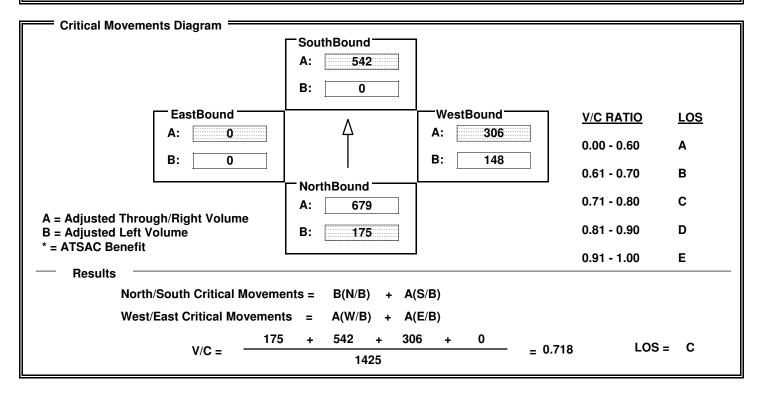
Volume	e/Lane/Siç	gnal Conf	iguratior	ns ====									
	NO	RTHBOU	ND	SO	SOUTHBOUND			WE	STBOU	ND	E/	ASTBOL	IND
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	184	989	0	4	1181	182		49	22	64	47	0	43
AMBIENT													
RELATED													
PROJECT													
TOTAL	184	989	0	4	1181	182		49	22	64	47	0	43
LANE	N N	个 命 负 2	 	4 &	个	<u>}</u>	[h 於 4 1	A 4		4 分 2	个 命	∰ I
	Phasir	ng F	RTOR	Phasi	ng	RTOR		Phasin	g	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	i> Xi	none>	Pern	n	OLA		Split		Auto	Spli	t	Auto


N/S:		De Soto Ave	e	W/E:	O	cnard St	I/S N	lo:	24
AM/PI	M: AM		Comments: E	xisting					
cou	NT DATE:		STU	JDY DATE:		GRO	WTH FACTOR	₹:	

Volume	/Lane/Si	gnal Conf	iguration	ıs ====								
		RTHBOU			SOUTHBOUND			VESTBOU	ND	E	ASTBOUN	1D
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	120	1337	29	44	2082	224	227	418	53	55	140	77
AMBIENT												
RELATED												
PROJECT												
TOTAL	120	1337	29	44	2082	224	227	418	53	55	140	77
LANE	∮ ∯	↑ ♠ ♠ 2 1		, v	↑ ∰ † 2 1	, t ₂ (4)	ή _ψ	个		f 分 1	个	1
	Phasii	ng F	RTOR	Phasi	ng l	RTOR	Phas	ing	RTOR	Phasi	ng	RTOR
SIGNAL	Pern	n /	Auto	Pern	n	Auto	Per	m	Auto	Perr	n	Auto

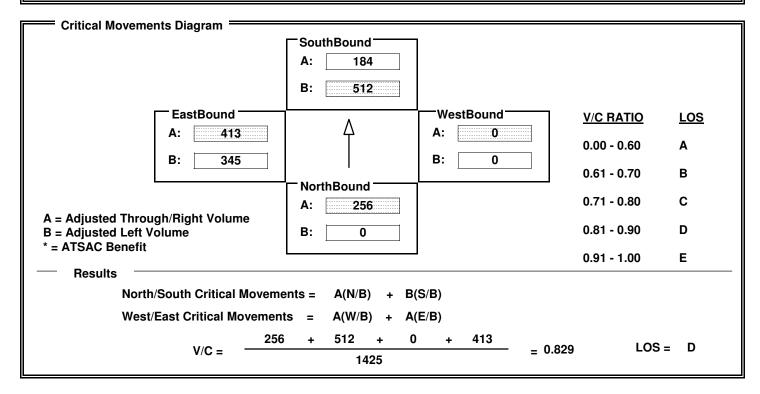
N/S:	Winnetka Ave	W/E:	Oxnard St	I/S No:	25
AM/PM: AN	Comments:	Existing			
COUNT DAT	E:	STUDY DATE:	GROW	TH FACTOR:	

Volume	/Lane/Sig	nal Confi	guration	ıs									
	NO	RTHBOU	ND	SO	SOUTHBOUND			WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	49	1064	45	31	1367	218	55	237	15	145	265	65	
AMBIENT													
RELATED													
PROJECT													
TOTAL	49	1064	45	31	1367	218	55	237	15	145	265	65	
LANE	f	↑ ♠ ♠ 1 1	ΓÞ 4 _Τ Þ	ψ ψ 1	수 余 숙 1 1	<u>}</u>	4 £	↑ ♠ ↑ 1	<u></u>	ή ή· 1	个 _价	1 I	
	Phasin	ng F	TOR	Phasi	ng l	RTOR	Phasi	ng	RTOR	Phasir	ng	RTOR	
SIGNAL	Perm	1	Auto	Pern	n	Auto	Perr	n	Auto	Perm	1	Auto	

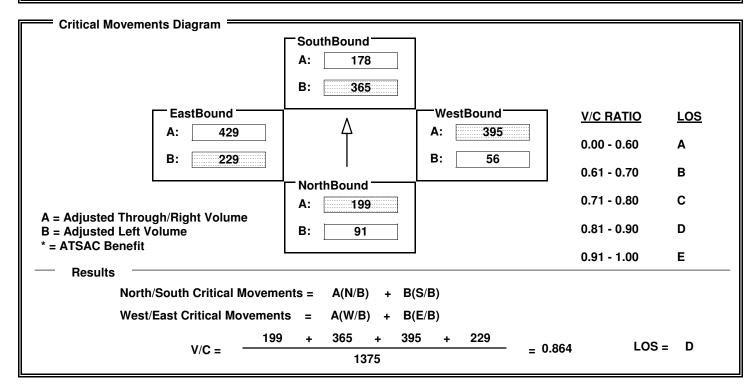

N/S:	De Soto Ave	W/E:	Burbank Bl	I/S No:	26
AM/PM: AM	Comments:	Existing			
COUNT DATE	:: s	TUDY DATE:	GROWT	TH FACTOR:	

Volume	/Lane/Sig	•										
	NO	RTHBOUN	ID	SC	UTHBOU	ND	W	ESTBOU	ND	EASTBOUND		ND
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	209	1517	0	0	1461	647	0	0	0	152	0	115
AMBIENT												
RELATED												
PROJECT												
TOTAL	209	1517	0	0	1461	647	0	0	0	152	0	115
LANE		↑ ♠ ♠ 3	_Γ δ 4 _Τ δ	4	↑ ♠ ↑ 2 1	<u>}</u>	4 £	↑ ♣ ⁴	<u>†</u> h 4p	1 2 2		2
	Phasin	ıg R	TOR	Phasi	ng	RTOR	Phasi	ng	RTOR	Phasin	g	RTOR
SIGNAL	Perm	ı <r< td=""><td>ione></td><td>Perr</td><td>n</td><td>Auto</td><td></td><td></td><td></td><td>Split</td><td></td><td>Auto</td></r<>	ione>	Perr	n	Auto				Split		Auto

Critical Movements Diagram				
J	SouthBound A: 703 B: 0			
EastBound	<u> </u>	WestBound	V/C RATIO	<u>LOS</u>
A: 63 B: 84		A: 0 B: 0	0.00 - 0.60	Α
J	No with Down of		0.61 - 0.70	В
A Adimated Three rab / Dight Volume	NorthBound A: 506		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 209		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				_
North/South Critical Moveme	ents = $B(N/B) + A($	S/B)		
West/East Critical Movemen	ts = $A(W/B)$ + $B($	E/B)		
V/C = 209) + 703 + 0 1500	+ 84 = 0.664	LOS =	В


N/S:	De Soto Ave	W/E:	101 WB Ramps	I/S No:	27
AM/PM: AM	Comments:	Existing			
COUNT DATE	s .	TUDY DATE:	GROWTH	FACTOR:	

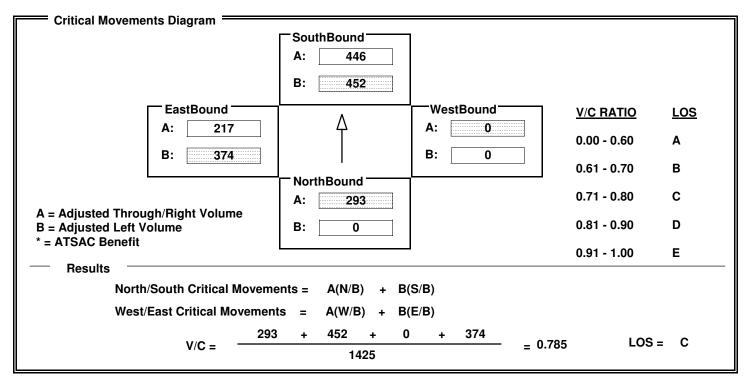
Volume	/Lane/Si	gnal Confi	guration	ıs ====									
	/ _ a,	ga. 00	garanor										
	NO	RTHBOU	ND	SO	SOUTHBOUND			WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	175	1358	0	0	1097	542	148	5	607	0	0	0	
AMBIENT													
RELATED													
PROJECT													
TOTAL	175	1358	0	0	1097	542	148	5	607	0	0	0	
LANE	4	个	l⊅ (41¢)		个	1	1	个 _价 ′	☆ ゅ ゆ	ф <i>ф</i>	Υ _(A) τ	ф ф ф	
	Phasir	ng F	TOR	Phasi	ng I	RTOR	Phasir	ng	RTOR	Phasir	ıg	RTOR	
SIGNAL	Prot-F	ix		Pern	n .	Auto	Split	t	Auto				


N/S:	De Soto Ave	W/E:	101 EB Ramps	I/S No:	28
AM/PM: AM	Comments: E	xisting			
COUNT DATE:	ST	UDY DATE:	GROV	VTH FACTOR:	

Volume	/Lane/Sig	gnal Conf	iguration	ıs ====								
	NO	RTHBOU	ND	SO	UTHBOU	ND	W	STBOU	ND	EASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	0	768	122	930	368	0	0	0	0	684	5	413
AMBIENT												
RELATED												
PROJECT												
TOTAL	0	768	122	930	368	0	0	0	0	684	5	413
LANE	ф	↑ ♠ ↑ 3	\$		↑ ♠ ↑ 2	<u></u>	ф 	个 命 4	<u>}</u> ♣ ♣	1 1		\(\frac{1}{1}\)
	Phasir	ng I	RTOR	Phasir	ng	RTOR	Phasir	ng	RTOR	Phasin	g	RTOR
SIGNAL	Perm	1 <	none>	Prot-F	ix <	none>				Split		Auto

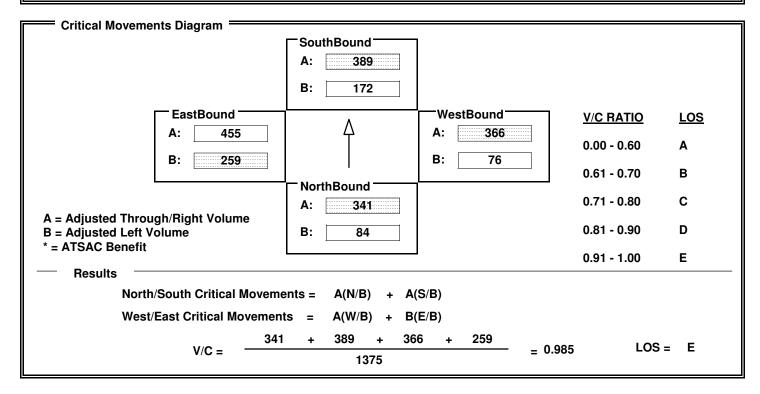
N/S:	De Soto Ave	W/E:	Ventura BI	I/S No:	29
AM/PM: AM	Comments:	Existing			
COUNT DATE	: sı	TUDY DATE:	GROWT	H FACTOR:	

Volume	/Lane/Sig	nal Conf	iguration	s									
	NOF	RTHBOU	ND	SO	SOUTHBOUND			WESTBOUND			FASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	91	262	135	664	178	382	56	1185	407	229	1231	57	
AMBIENT													
RELATED													
PROJECT													
TOTAL	91	262	135	664	178	382	56	1185	407	229	1231	57	
LANE	1 1		, IÞ 4TÞ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	个	1	ψ ∰ 1	↑ ♠ ↑ 3	1 I	f 分	↑ ♠ ↑ 2	<u>2</u>	
	Phasin	g F	RTOR	Phasir	ng	RTOR	Phasi	ng I	RTOR	Phasir	ng	RTOR	
SIGNAL	Split		Auto	Split	t	OLA	Pern	n	OLA	Prot-F	ix	Auto	

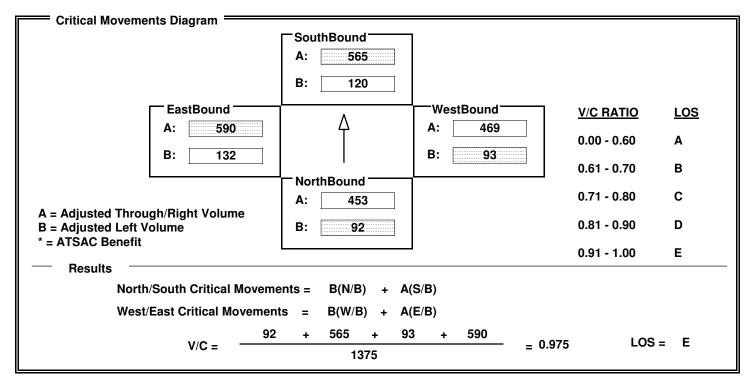

N/S:	Winnetka Ave	W/E:	101 WB Ramps	I/S No:	30
AM/PM: AN	Comments:	Existing			
COUNT DAT	E:	STUDY DATE:	GROWTI	H FACTOR:	

		gnal Confi		SOUTHBOUND			W	STBOL	IND •	EASTBOUND		
EXISTING	LT 143	тн 816	RT O	LT 0	тн 1005	RT 440	LT 339	тн 2	RT 512	LT 0	тн 0	RT 0
AMBIENT RELATED												
PROJECT												
TOTAL	143	816	0	0	1005	440	339	2	512	0	0	0
LANE	fy 分	个	Γ δ 4 Τδ	ф	个	1 T	1 人	↑ ☆ ·	Ŷ 1	ф [↑ ∰ ⁴	ή h 4ηλ
	Phasii	ng F	TOR	Phasi	ng l	RTOR	Phasir	ng	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	ix <r< td=""><td>none></td><td>Pern</td><td>n</td><td>Auto</td><td>Split</td><td>t</td><td>Auto</td><td></td><td></td><td></td></r<>	none>	Pern	n	Auto	Split	t	Auto			

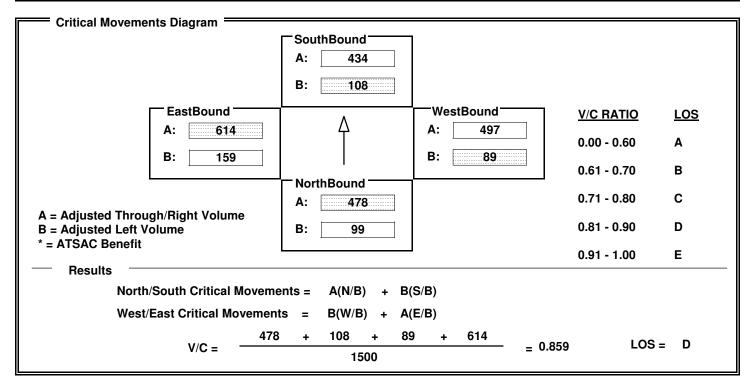
Critical Movements Diagram				
	SouthBound A: 503 B: 0			
EastBound —	1 ^	WestBound	V/C RATIO	<u>LOS</u>
A: 0 B: 0		A: 284 B: 284	0.00 - 0.60	A
J] ' .	201	0.61 - 0.70	В
A A II	NorthBound A: 408		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 143		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Movem	ents = $B(N/B) + A($	S/B)		
West/East Critical Movemen	its = $A(W/B) + A(W/B)$	E/B)		
V/C = - 143	3 + 503 + 28	4 + 0 = 0.653	LOS =	В
V /0 =	1425			


N/S:	\	Vinnetka Ave	W/E:	101 EB Ramp	os I	/S No:	31
AM/P	M: AM	Comments:	Existing				
COU	NT DATE:	ST	UDY DATE:		GROWTH FAC	TOR:	

Volume	e/Lane/Sig	anal Conf	iguration	ıs ——									
	NO	RTHBOU	ND	SO	SOUTHBOUND			WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	0	586	193	452	891	0		0	0	0	374	0	217
AMBIENT													
RELATED													
PROJECT													
TOTAL	0	586	193	452	891	0		0	0	0	374	0	217
LANE	ф П	수 ☆ ☆ ☆ 1		h 分	个	, t ₂ (t ₂	ф	₽	↑ ∰ ⁴	\$	ή ή Δ 1	^ A ^	1
	Phasir	ng F	RTOR	Phasi	ng l	RTOR	Р	hasir	ng	RTOR	Phasin	g	RTOR
SIGNAL	Perm	1 <	none>	Prot-F	ix <	none>					Split		Auto


N/S:	Winnetka Ave	W/E:	Ventura BI	I/S No:	32
AM/PM: AM	Comments: E	xisting			
COUNT DATE:	ST	UDY DATE:	G	ROWTH FACTOR:	

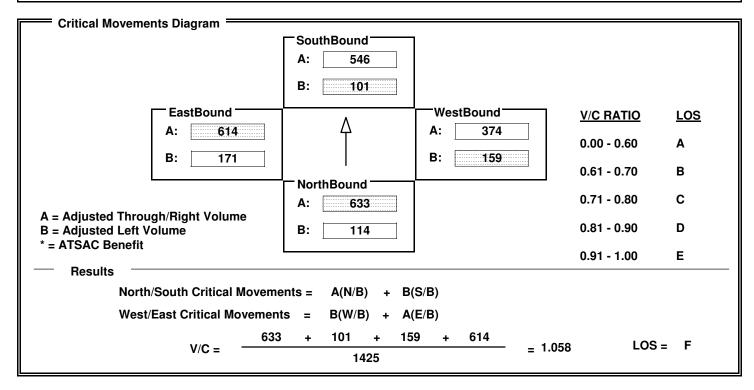
Volume	e/Lane/Siç	gnal Conf	iguration	ıs 									
	NO	RTHBOU	ND	SO	UTHBOU	ND	W	WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	84	309	32	313	389	308	76	731	211	259	1291	74	
AMBIENT													
RELATED													
PROJECT													
TOTAL	84	309	32	313	389	308	76	731	211	259	1291	74	
LANE	1	个 _命 仓 1		4 分	↑ ♠ ↑ 1	<u>}</u>	փ գ 1	2	1	f 分 1	2 1		
	Phasir	ng F	RTOR	Phasir	ng l	RTOR	Phasi	ing	RTOR	Phasir	ng	RTOR	
SIGNAL	Split	t /	Auto	Split	t	OLA	Peri	m	OLA	Prot-F	ix	Auto	


N/S:	De Soto Ave	W/E:	Saticoy St	I/S No: 1	
AM/PM: PM	Comments: E	xisting			
COUNT DATE:	STU	JDY DATE:	GROWT	H FACTOR:	

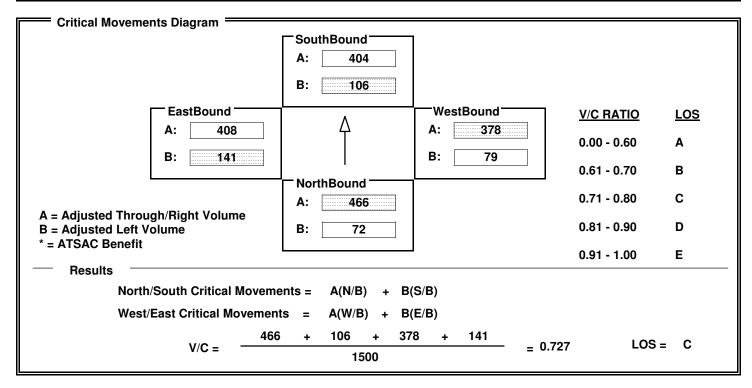
Volume	e/Lane/Sid	gnal Conf	iguration	ıs ====									
	-, <u>-</u> ,	J											
	NO	RTHBOU	ND	SO	SOUTHBOUND			WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT	L	T	TH	RT	LT	TH	RT
EXISTING	92	1229	129	120	991	138	9	3	838	99	132	1107	72
AMBIENT													
RELATED													
PROJECT													
TOTAL	00	1000	100	100	001	100		2	000	00	100	1107	70
IOIAL	92	1229	129	120	991	138	9	3	838	99	132	1107	72
LANE	Φ ∰ 1	↑ ♠ ♠ 2 1	;	f 分	个	<u> </u>	փ 1	<i>₽</i>	个 命 行 1 1	<u>}</u>	ἡ ∰ 1	个	\$
	Phasir	ng F	RTOR	Phasi	ng	RTOR	Pł	nasir	ng	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	Fix	Auto	F	Perm	1	Auto	Prot-F	ix	Auto

N/S:	Mason Ave	W/E:	Saticoy St	I/S No:	2
AM/PM: PM	Comments: E	xisting			
COUNT DATE:	ST	JDY DATE:	G	ROWTH FACTOR:	

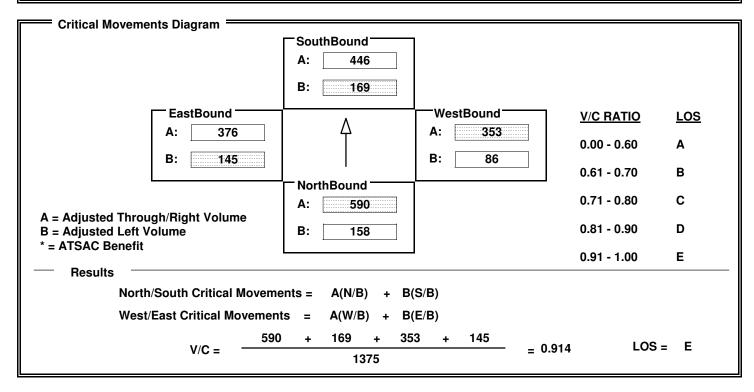
Volume	e/Lane/Siç	gnal Conf	iguration	ıs <u> </u>									
	NO	RTHBOU	ND	SO	SOUTHBOUND			WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	99	877	78	108	746	121	89	919	74	159	1120	107	
AMBIENT													
RELATED													
PROJECT													
TOTAL	99	877	78	108	746	121	89	919	74	159	1120	107	
LANE	1	个		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	↑ ♠ ↑ 1 1		ή <u>β</u>	↑ ♠ ²	1	f 分	个		
	Phasir	ng F	RTOR	Phasir	ng	RTOR	Phas	ing	RTOR	Phasii	ng	RTOR	
SIGNAL	Perm	1	Auto	Perm	1	Auto	Per	m	Auto	Pern	n	Auto	


N/S: Winnetka A	Ave W/E:	Saticoy St	I/S No: 3
AM/PM: PM	Comments: Existing		
COUNT DATE:	STUDY DATE:	GROV	VTH FACTOR:

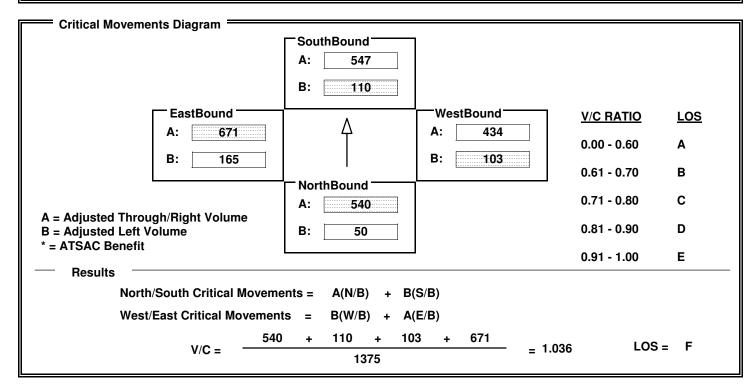
Volume	/Lana/Si	gnal Conf	iguration									
Volume	Lancion	gilai Colli	iguratioi	13								
	NO	RTHBOU	ND	SO	UTHBOU	ND	W	ESTBOU	ND	E	STBOUN	ID
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	135	1047	117	157	985	152	86	797	148	124	908	120
AMBIENT												
RELATED												
PROJECT												
TOTAL	135	1047	117	157	985	152	86	797	148	124	908	120
LANE	4 A	个	; rÞ 4⊤Þ	∮ ∱ 1	↑ ∰ ↑ 2	1 d _T b	η _φ . 1	个	4 d d d d d d d d d d d d d d d d d d d	f 分	个 命 仓 1 1	
	Phasir	ng F	RTOR	Phasir	ng l	RTOR	Phasi	ng	RTOR	Phasir	ng	RTOR
SIGNAL	Pern	n .	Auto	Pern	1	Auto	Pern	n	Auto	Perm	1	Auto


N/S:	De Soto Ave	W/E:	Sherman Way	I/S No:	4
AM/PM: PM	Comments:	xisting			
COUNT DATE:	ST	UDY DATE:	GROWT	H FACTOR:	

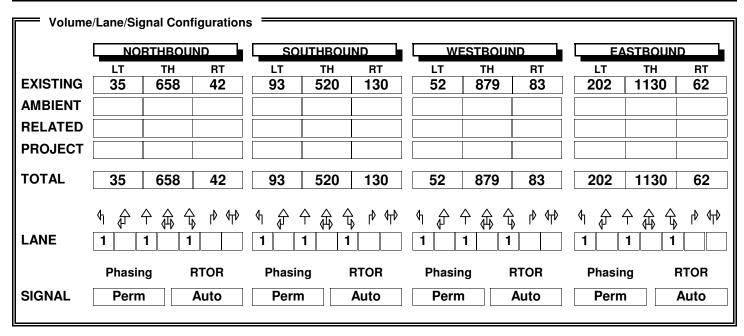
Volume	e/Lane/Sig	gnal Conf	iguration	ıs ——								
	NO	RTHBOU	ND	SO	SOUTHBOUND			WESTBOUND			ASTBOUN	ID
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	114	1625	275	101	944	147	159	993	129	171	1699	144
AMBIENT												
RELATED												
PROJECT												
TOTAL	114	1625	275	101	944	147	159	993	129	171	1699	144
LANE	1	↑ ♣ ♠ 2		f 分	个	<u></u>	↑ ↑ 1	↑ ∰ [∠]		f 分	↑ ♠ ↑ 2 1	
	Phasir	ng F	RTOR	Phasii	ng	RTOR	Phas	ing	RTOR	Phasii	ng	RTOR
SIGNAL	Perm	1	Auto	Pern	n	Auto	Prot-	Fix	Auto	Prot-F	ix	Auto

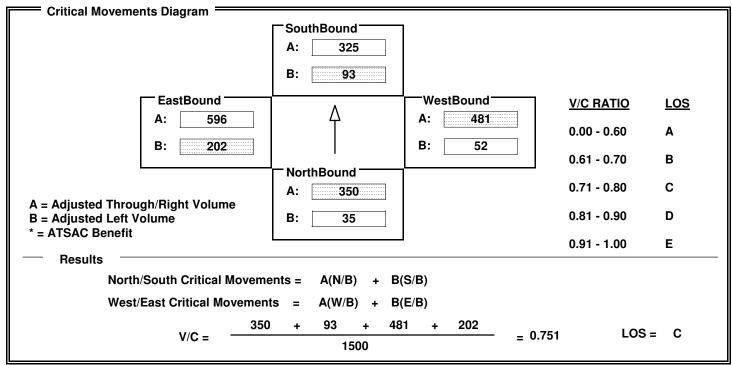

N/S:	Mason Ave	W/E:	Sherman Way	I/S No:	5
AM/PM: PM	Comments:	xisting			
COUNT DATE:	ST	UDY DATE:	GROW	TH FACTOR:	

Volume	e/Lane/Siç	gnal Conf	iguration	ıs ====									
	NO	RTHBOU	ND	SO	SOUTHBOUND			WESTBOUND			FASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	72	870	61	106	673	135	79	1051	84	141	1169	55	
AMBIENT													
RELATED													
PROJECT													
TOTAL	72	870	61	106	673	135	79	1051	84	141	1169	55	
LANE	1	个		f 分	个 命 (1		ή ₍) 1	↑ ♣ 4 2 1		f 分	个		
	Phasir	ng F	RTOR	Phasir	ng	RTOR	Phas	ing	RTOR	Phasi	ng	RTOR	
SIGNAL	Perm	1	Auto	Pern	n	Auto	Per	m	Auto	Pern	n	Auto	

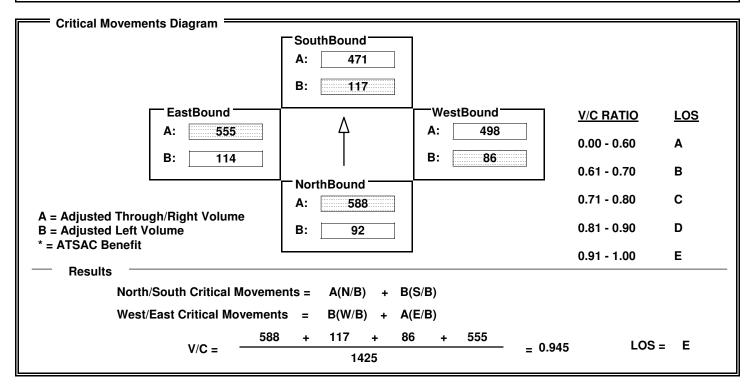

N/S:	Winnetka Ave	W/E:	Sherman Way	I/S No:	6
AM/PM: PN	Comments:	Existing			
COUNT DAT	E:	STUDY DATE:	GROWT	H FACTOR:	

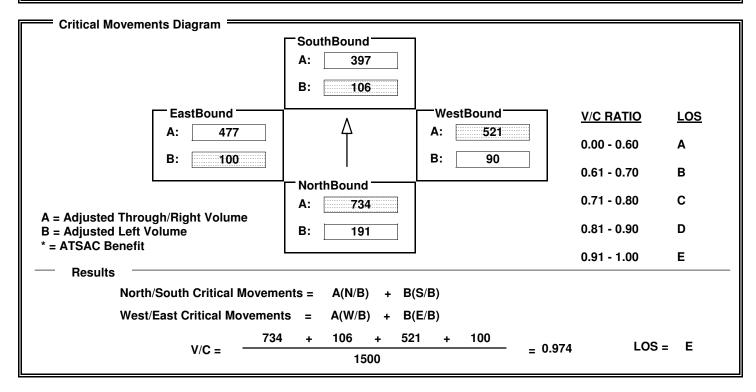
Volume	e/Lane/Sig	gnal Confi	guration	ıs 									
	NO	RTHBOUN	ND	SO	SOUTHBOUND			WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	158	1088	91	169	891	147	86	911	147	145	1029	99	
AMBIENT													
RELATED													
PROJECT													
TOTAL	158	1088	91	169	891	147	86	911	147	145	1029	99	
LANE	4 A	↑ ♠ ♠ 1	↑ 4 _† >	, N	↑ ∰ 1 2	½ /	f 分 1	个		f 分	2 1	I	
SIGNAL	Phasir Prot-F		TOR Auto	Phasir Prot-F		RTOR Auto	Phasii Prot-F		RTOR Auto	Phasir Prot-F	,	RTOR Auto	



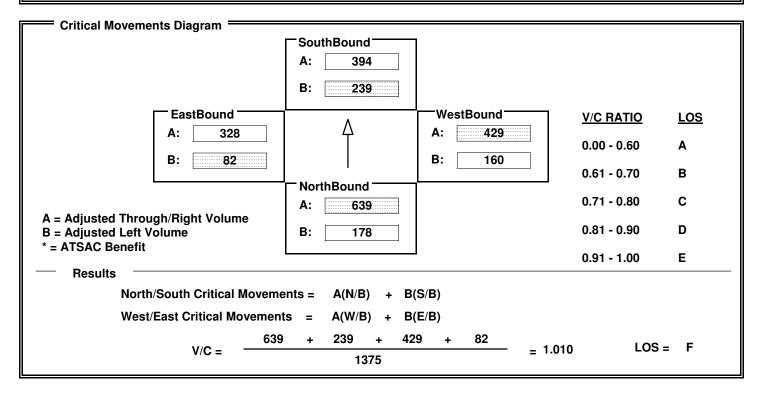

N/S:	De Soto Ave	W/E:	Vanowen St	I/S No:	7
AM/PM: PM	Comments:	Existing			
COUNT DATE	:s	TUDY DATE:	GROWTH	I FACTOR:	

Volume/	Lane/Sig	nal Confi	iguration	ıs ====									
[NOI	RTHBOU	VD.	SO	SOUTHBOUND			WE	STBOU	ND	E	ASTBOU	ND
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	50	1503	117	110	892	202		103	868	135	165	1341	92
AMBIENT													
RELATED													
PROJECT													
TOTAL	50	1503	117	110	892	202		103	868	135	165	1341	92
LANE [↑ ♠ ♠ 2 1		, v	个 命 仓 1 1	ф ф ф			Ŷ ∯ Ý 2	<u>}</u>	∮ ∰	个	\(\frac{1}{2}\) \(\frac{1}{2}\)
	Phasin	ng F	RTOR	Phasir	ng	RTOR		Phasin	g	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto		Prot-Fi	ix	OLA	Prot-F	ix	OLA

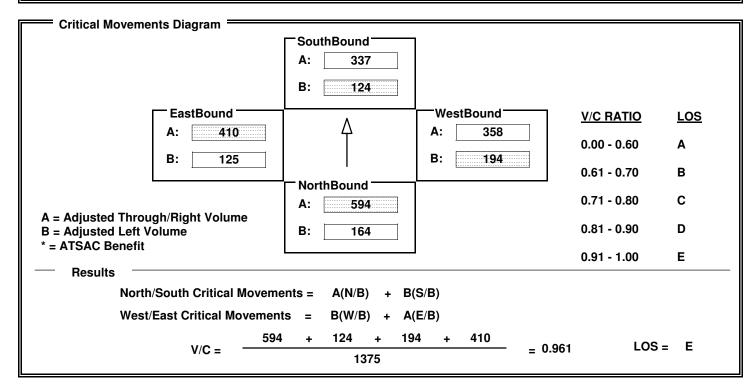

N/S: [Masor	n Ave	W/E:	Vanowen St	I/S No:	8
AM/PI	M: PM	Comments: Ex	isting			
COU	NT DATE:	STUI	DY DATE:	GRO	WTH FACTOR:	


N/S:	Winnetka Ave	W/E:	Vanowen St	I/S No:	9
AM/PM: PM	Comments:	xisting			
COUNT DATE:	ST	UDY DATE:	GROW	TH FACTOR:	

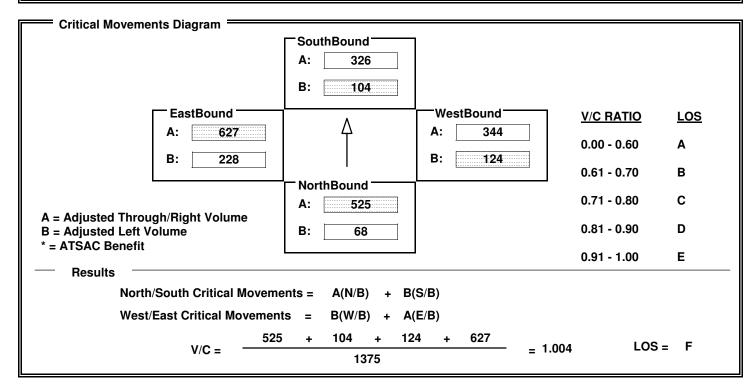
Volume	/Lane/Si	gnal Confi	iguration	ıs ====								
	NO	RTHBOU	ND	SO	SOUTHBOUND			WESTBOUND			ASTBOUN	ID
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	92	1081	95	117	853	89	86	887	108	114	1031	79
AMBIENT												
RELATED												
PROJECT												
TOTAL	92	1081	95	117	853	89	86	887	108	114	1031	79
LANE	1	↑ ♠ ♠ 1		f 分	个 余 行 1 1		∮ ∰	个 余 行 1 1	 	f 分	↑ ♠ ↓ 1 1	\$ I\$ (II)
	Phasir	ng F	RTOR	Phasir	ng	RTOR	Phasi	ng	RTOR	Phasir	ng	RTOR
SIGNAL	Prot-F	ix /	Auto	Prot-F	ix	Auto	Perr	n	Auto	Pern	1	Auto


N/S:	Shoup Ave	W/E:	Victory BI	I/S No:	10
AM/PM: PM	Comments: E	xisting			
COUNT DATE:	ST	JDY DATE:	GF	ROWTH FACTOR:	

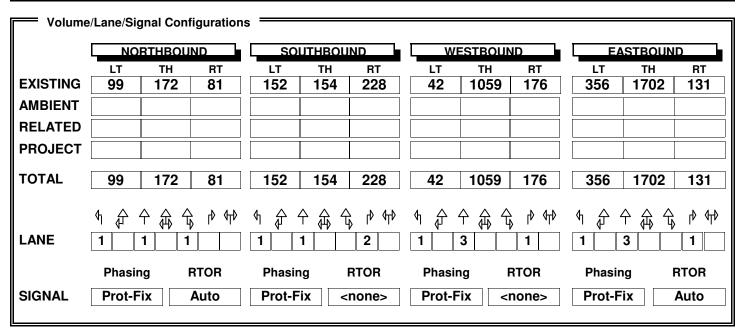
Volume	e/Lane/Si	gnal Conf	iguration	ıs ====								
	NO	RTHBOU	ND	SO	UTHBOU	ND	V	VESTBOU	ND	E/	STBOU	ND
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	191	1358	110	106	703	91	90	885	157	100	827	127
AMBIENT												
RELATED												
PROJECT												
TOTAL	191	1358	110	106	703	91	90	885	157	100	827	127
LANE	4 A	分 ☆ ☆ ☆ 1	 	1	个 命 仓 1 1	<u>}</u>	ἡ ∰ 1	个		1	↑ ♠ ↑ 1 ·	\(\frac{1}{2}\) \(\phi\) \(\p
	Phasii	<u> </u>	RTOR	Phasir		RTOR	Phas		RTOR	Phasir		RTOR
SIGNAL	Pern	n	Auto	Perm	1	Auto	Per	m	Auto	Perm	1	Auto

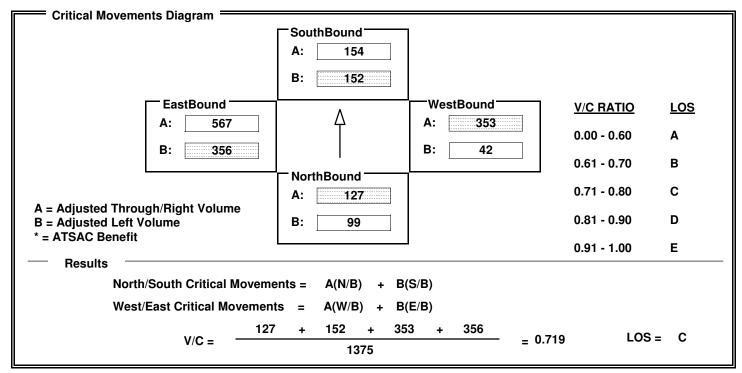

N/S: Topanga (Canyon BI	W/E:	Victory BI	I/S No:	11
AM/PM: PM	Comments:	existing			
COUNT DATE:	ST	UDY DATE:	GROV	VTH FACTOR:	

Volume	/I ang/Si	gnal Conf	iauration	. = =								
Volume	s/ Larie/ Si	giiai ooiii	iguratioi	13								
	NO	RTHBOU	ND	SO	UTHBOU	ND	W	ESTBOU	ND	E	STBOUN	ID
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	178	1558	358	239	1066	116	290	857	225	149	830	155
AMBIENT												
RELATED												
PROJECT												
TOTAL	178	1558	358	239	1066	116	290	857	225	149	830	155
LANE	փ ∰ 1	수 命 句 2 1	; r> 4+>		个		4 £	个	<u>}</u>	4 分	个	
	Phasii	ng F	RTOR	Phasii	ng l	RTOR	Phasi	ng	RTOR	Phasir	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto	Prot-F	Fix	OLA	Prot-F	ix	Auto

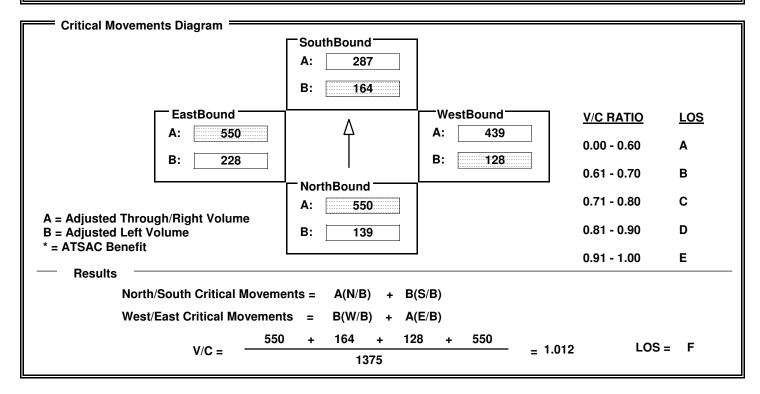

N/S:	Canoga Ave	W/E:	Victory BI	I/S No:	12
AM/PM: PM	Comments: E	xisting			
COUNT DATE:	ST	JDY DATE:		GROWTH FACTOR:	

Volume	/Lane/Sig	gnal Conf	iguration	ıs ====								
	NO	RTHBOU	ND	SO	UTHBOU	ND	W	ESTBOU	ΝD	E/	STBOUN	ID
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	164	1435	346	124	879	132	194	1075	200	125	1231	164
AMBIENT												
RELATED												
PROJECT												
TOTAL	164	1435	346	124	879	132	194	1075	200	125	1231	164
LANE		↑ ♠ ♠ 2 1		, v	↑ ♠ ↑ 2 1	<u></u>	∮ ∰	↑ ♠ ↑	\$	f 分	3	1
	Phasir	ng F	RTOR	Phasir	ng l	RTOR	Phasi	ng l	RTOR	Phasir	ng	RTOR
SIGNAL	Prot-F	ix .	Auto	Prot-F	ix	Auto	Prot-F	ix	OLA	Prot-F	ix	OLA



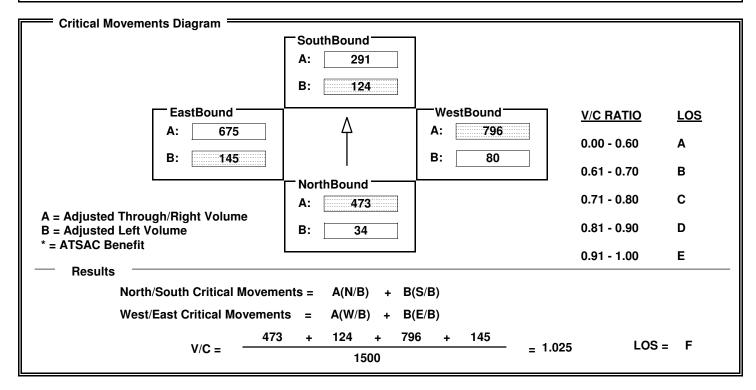

N/S:	De Soto Ave	W/E:	Victory BI	I/S No:	13
AM/PM: PM	Comments: E	xisting			
COUNT DATE:	ST	JDY DATE:	GF	ROWTH FACTOR:	

Volume	/Lane/Si	gnal Conf	iguration	ıs ====								
	NO	RTHBOU	ND	SO	UTHBOU	ND	W	ESTBOU	ND	E/	STBOUN	ID
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	68	1152	423	104	802	176	225	1033	113	415	1759	123
AMBIENT												
RELATED												
PROJECT												
TOTAL	68	1152	423	104	802	176	225	1033	113	415	1759	123
LANE	4 A	↑ ♠ ↑ 2 1		, ,	个	\$	4 p	今 余 仓 3	1	4 分 2	2 1	, t _p ₄ t _p
	Phasir	ng F	RTOR	Phasir	ng l	RTOR	Phasi	ng l	RTOR	Phasir	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto	Prot-F	ix <	none>	Prot-F	ix	Auto


N/S: [Maso	n Ave	W/E:	Victory	ВІ	I/S No:	14
AM/PI	M: PM	Comments:	Existing				
COU	NT DATE:	ST	UDY DATE:		GROWTH F	ACTOR:	

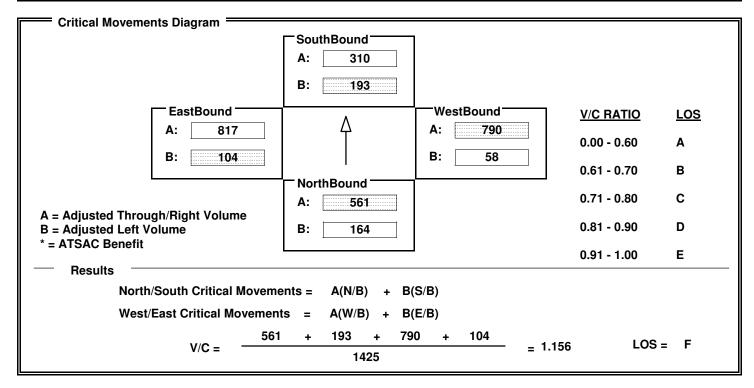
N/S:	Winnetka Ave	W/E:	Victory BI	I/S No:	15
AM/PM: PM	Comments:	xisting			
COUNT DATE:	ST	UDY DATE:		ROWTH FACTOR:	

- Volume	/Lana/Sia	anal Cant	iauratian										
Volume	:/Lane/Sig	gnal Conf	iguration	15									
	NO	RTHBOU	ND	SO	UTHBOU	ND		WE	STBOUN	ND	E	ASTBOUN	ID
	LT	TH	RT	LT	TH	RT	-	LT	TH	RT	LT	TH	RT
EXISTING	139	966	133	164	741	121		128	1180	137	228	1475	175
AMBIENT													
RELATED													
PROJECT													
TOTAL	100	000	400	101		101		100	4400	40=	000		
TOTAL	139	966	133	164	741	121		128	1180	137	228	1475	175
LANE	Φ ∰ 1	个 命 句 1 1	; rÞ 4πÞ	ф ф 1	↑ ♠ ↑ 2 1		փ 1	<u> </u>	↑ ↔ ↓ 2 1		f 分	个 命 句 2 1	;
	Phasir	ng F	RTOR	Phasir	ng l	RTOR		Phasin	ng F	RTOR	Phasir	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto		Prot-F	ix	Auto	Prot-F	ix	Auto

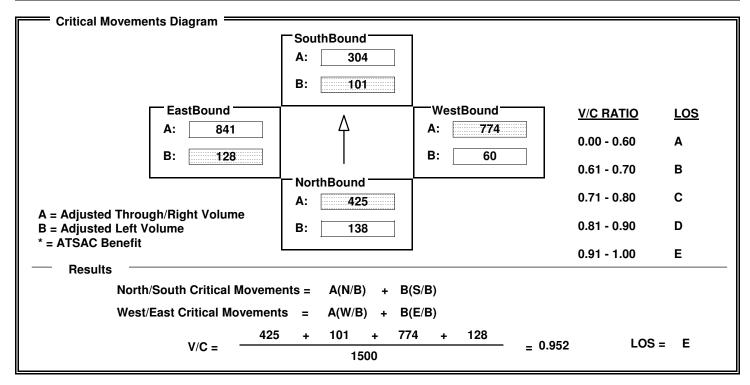

N/S:	Topham St	W/E:	Victory BI	I/S No:	16
AM/PM: PM	Comments: E	xisting			
COUNT DATE:	ST	JDY DATE:	G	ROWTH FACTOR:	

Volume	/Lane/Sign	al Configura	ations ====								
	NOR"	THBOUND	SO	UTHBOU	ND	W	ESTBOUN	ID	E	STBOUN	D
	LT	TH R	T LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	300	0 6	0	0	0	0	1291	0	0	1562	337
AMBIENT											
RELATED											
PROJECT											
TOTAL	300	0 6	0	0	0	0	1291	0	0	1562	337
LANE	⁴			↑ ♠ ↑ 0 0 0		, <u> </u>	수 슈 수 2	; r> 4T>	4 分	↑ ♠ ♠ 2	
	Phasing	RTOF	R Phasi	ng F	RTOR	Phasir	ng F	RTOR	Phasir	ng l	RTOR
SIGNAL	Prot-Fix	<none< td=""><td>Prot-F</td><td>ix</td><td>Auto</td><td>Pern</td><td>1</td><td>Auto</td><td>Pern</td><td>1</td><td>OLA</td></none<>	Prot-F	ix	Auto	Pern	1	Auto	Pern	1	OLA

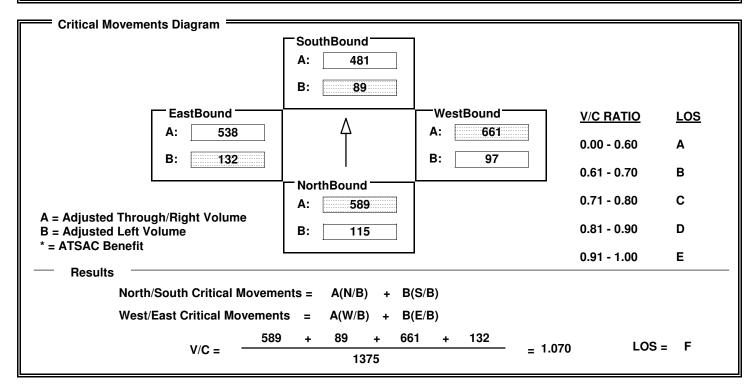
Critical Movements Diagram										
	SouthBound A: 0 B: 0									
EastBound —	Λ	WestBound	V/C RATIO	<u>LOS</u>						
A: 781 B: 0		A: 646 B: 0	0.00 - 0.60	A						
	<u> </u>		0.61 - 0.70	В						
A Adiosa d Thomas de / Dioda Volume	NorthBound A: 6		0.71 - 0.80	С						
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 300		0.81 - 0.90	D						
* = ATSAC Benefit			0.91 - 1.00	E						
Results										
North/South Critical Movements = B(N/B) + A(S/B)										
West/East Critical Movemen	ts = B(W/B) + A(E/B)								
300) + 0 + 0		LOS =	С						
V/C =	1425	= 0.759		J						


N/S:	Corbi	n Ave	W/E:	Victory BI	1/	/S No:	17	
AM/PI	M: PM	Comments:	Existing					
COU	NT DATE:	STUDY DATE: GROWTH FACTOR:						

Volume	e/Lane/Sig	gnal Conf	iguration	s									
	NORTHBOUND			SO	SOUTHBOUND		v	WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	34	811	134	124	431	151	80	1246	345	145	1320	29	
AMBIENT													
RELATED													
PROJECT													
TOTAL	34	811	134	124	431	151	80	1246	345	145	1320	29	
LANE	∮ ∰	个 命 句 1 1		竹 矿	个		竹 矿	个		f 分 1	↑ ♠ ↑ 1 1	}	
	Phasir	ng F	RTOR	Phasii	ng	RTOR	Phas	sing	RTOR	Phasii	ng	RTOR	
SIGNAL	Perm	1	Auto	Pern	n	Auto	Per	m	Auto	Pern	1	Auto	


N/S:	Tampa Ave	W/E:	Victory BI	I/S No:	18
AM/PM: PM	Comments: E	xisting			
COUNT DATE:	ST	JDY DATE:	GR	OWTH FACTOR:	

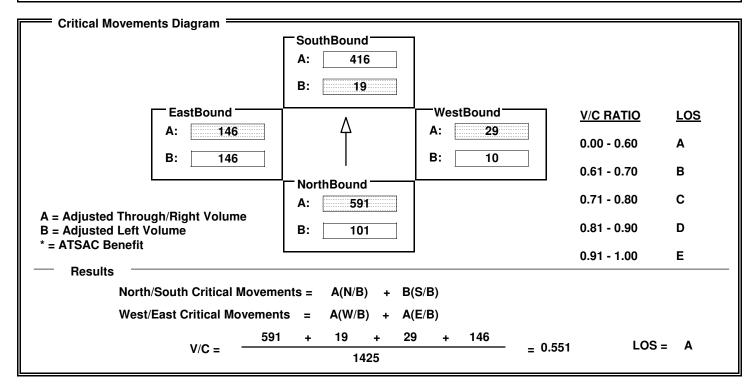
Volume	e/Lane/Si	gnal Conf	iguration	ıs ====								
	NO	RTHBOU	ND	SO	UTHBOL	IND	W	ESTBOU	ND	E/	STBOUN	ID
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	164	1121	108	193	619	128	58	1387	192	104	1596	38
AMBIENT												
RELATED												
PROJECT												
TOTAL	164	1121	108	193	619	128	58	1387	192	104	1596	38
LANE	. N.	个	; r (†) 1		↑ ∰ 1 2	1 □	f 分 1	수 点 分 1 1 1	↑ ↑ (f 分	个 _体 仓 1 1	; ID (TD
	Phasir	ng F	RTOR	Phasir	ng	RTOR	Phasi	ng l	RTOR	Phasii	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto	Perr	m	Auto	Pern	1	Auto


N/S:		Wilbur Av	e	W/E:	Vi	ctory BI	I/S No	o:	19
AM/P	M: PM		Comments: E	xisting					
coul	NT DATE:		ST	UDY DATE:		GR	OWTH FACTOR	:	

── Volume	e/Lane/Sig	anal Conf	iauration	. ===									
Volume	e/Lane/Sig	gilai Colli	iguratioi	15									
	NO	RTHBOU	VD	SO	UTHBOU	ND		W	ESTBOU	ND	E/	ASTBOUN	ID
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	138	761	88	101	510	97	(60	1343	205	128	1614	68
AMBIENT													
RELATED													
PROJECT													
TOTAL	138	761	88	101	510	97	(60	1343	205	128	1614	68
LANE	4 A	↑ ☆ ţ 1 1		竹 分	↑ ♠ ↑ 1 1	↑ \p\ \dagger{\partsq}	փ 1	₽ I	个	↑ \p\ \dagger{\partsq}	f 分	个 命 句 1 1	\$
	Phasin	ng F	RTOR	Phasii	ng	RTOR	P	hasiı	ng	RTOR	Phasii	ng	RTOR
SIGNAL	Perm	1	Auto	Pern	n	Auto		Pern	n	Auto	Pern	1	Auto
				-									

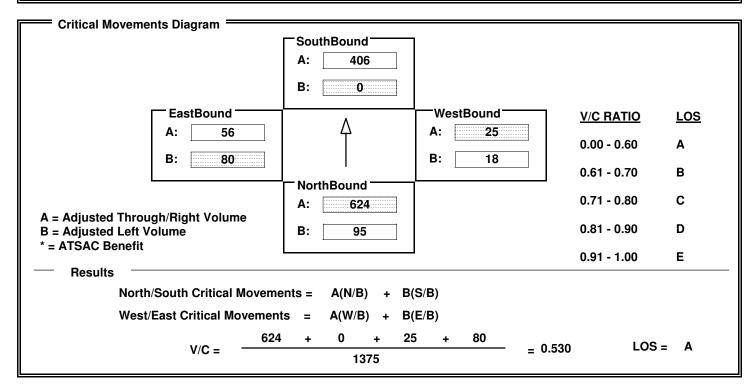
N/S:	Reseda BI	W/E:	Victory BI	I/S No:	20
AM/PM: PM	Comments:	Existing			
COUNT DATE	: sı	UDY DATE:	GROWT	H FACTOR:	

EXISTING 115 1066 111 89 800 161 97 1322 156 132 1507 AMBIENT RELATED PROJECT TOTAL 115 1066 111 89 800 161 97 1322 156 132 1507 LANE 1 1 1 1 1 1 1 1 1 1 2 1 1	Volume	e/Lane/Signal C	onfiguration	ns								
EXISTING 115 1066 111 89 800 161 97 1322 156 132 1507 AMBIENT RELATED PROJECT TOTAL 115 1066 111 89 800 161 97 1322 156 132 1507 AMBIENT TOTAL 115 1066 111 89 800 161 97 1322 156 132 1507 AMBIENT TOTAL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		NORTHB	OUND	SOUTI	IBOUND	W	WESTBOUND			FASTBOUND		
AMBIENT RELATED						LT		RT			RT	
RELATED	EXISTING	115 106	6 111	89 8	300 161	97	1322	156	132	1507	107	
PROJECT	AMBIENT											
TOTAL 115 1066 111 89 800 161 97 1322 156 132 1507 4 分分分分分分分分分分分分分分分分分分分分分分分分分分分分分分分分分分分	RELATED											
4 分 分 会 分 か か り か ク 会 会 か か り か か か か か か か な か 会 会 な か か り か か り か か な か か り か か な か 会 な な な な な な な な な な な な な な な	PROJECT											
LANE 1 1 1 1 1 1 1 2 1 1 1 2 1	TOTAL	115 106	6 111	89 8	300 161	97	1322	156	132	1507	107	
Phasing RTOR Phasing RTOR Phasing RT	LANE	りか 分分 1 1	, v	りかかか 1 1		¶ 分 1		β Φβ 1	N N			
		Phasing	RTOR	Phasing	RTOR	Phasii	ng R	TOR	Phasir	ng	RTOR	
SIGNAL Prot-Fix Auto Prot-Fix Auto Prot-Fix Auto Prot-Fix A	SIGNAL	Prot-Fix	Auto	Prot-Fix	Auto	Prot-F	Fix A	Auto	Prot-F	ix	Auto	

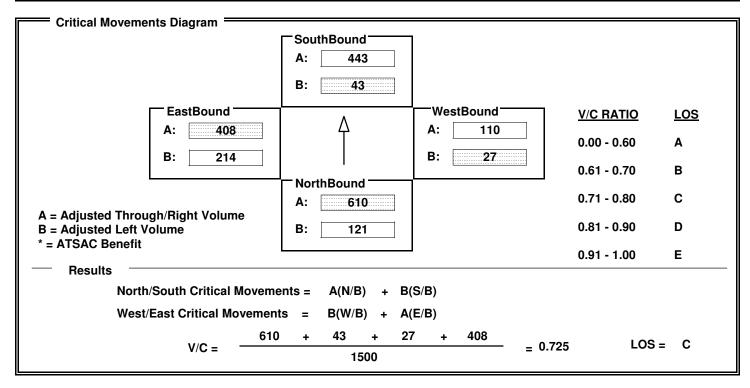

N/S:	De Soto Ave	W/E:	El Rancho Dr	I/S No:	21
AM/PM: PM	Comments: E	xisting			
COUNT DATE:	ST	JDY DATE:	GROWTH	I FACTOR:	

Volume	e/Lane/Si	gnal Conf	iguration	ıs ——									
	NO	RTHBOU	ND	SC	SOUTHBOUND			WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	7	1864	193	14	1232	1	35	0	7	2	0	6	
AMBIENT													
RELATED													
PROJECT													
TOTAL	7	1864	193	14	1232	1	35	0	7	2	0	6	
LANE	∮ ∰ 1 1	↑ ♠ ♠ 2 1		f 分	个	<u></u>	f 分	个 余 ⁴	<mark>} </mark>	f 分	个 _命 行	1	
	Phasii	ng F	RTOR	Phasi	ng l	RTOR	Phasir	ng	RTOR	Phasii	ng	RTOR	
SIGNAL	Pern	n /	Auto	Perr	n	Auto	Perm	1	Auto	Pern	1 <	<none></none>	

Critical Movements Diagram				
ontidar movemento piagram	SouthBound A: 411 B: 14			
EastBound —	Δ	WestBound	V/C RATIO	<u>LOS</u>
A: 6 B: 2		A: 7 B: 35	0.00 - 0.60	A
	<u> </u>		0.61 - 0.70	В
A Adimated Three colo / Discht Volume	NorthBound A: 686		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 7		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Movement	ents = $A(N/B) + B($	S/B)		
West/East Critical Movemen	ats = $B(W/B)$ + $A($	E/B)		
V/C =	6 + 14 + 35	5 + 6 = 0.494	LOS =	Α
V/C =	1500	= 0.434		


N/S:	De Soto Ave	W/E:	Erwin St	I/S No:	22
AM/PM: PM	Comments: E	xisting			
COUNT DATE:	ST	JDY DATE:	GROW	TH FACTOR:	

Volume	e/Lane/Si	gnal Confi	guration	ns								
	NO	RTHBOU	ND -	SO	UTHBOU	ND	w	/ESTBOL	JND	EA	STBOU	ND
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	101	1745	29	19	1075	174	10	9	10	185	10	244
AMBIENT												
RELATED												
PROJECT												
TOTAL	101	1745	29	19	1075	174	10	9	10	185	10	244
LANE	∮ ∮ 1 1 1 1	↑ ♠ ♠ 2 1	Λ	, <u>v</u>	수 ☆ ☆ 2 1	<u>ф</u> фф	ф	个 ☆ ·	<u>t</u>	1 2	1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1	\(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\)
	Phasir	ng F	TOR	Phasii	ng l	RTOR	Phas	ing	RTOR	Phasin	g	RTOR
SIGNAL	Pern	n /	Auto	Pern	n	Auto	Spl	it	Auto	Split		Auto


N/S: Winnetka	a Ave W/E:	Brahma Dr/Calvert St	I/S No:	23
AM/PM: PM	Comments: Existing			
COUNT DATE:	STUDY DATE:	GROWTH	H FACTOR:	

7 0 14 1110		gnal Confi			SOUTHBOUND			STBOU	ND -	EA	FASTBOUND -			
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT		
EXISTING	95	1248	0	10	811	98	18	4	21	146	0	104		
AMBIENT														
RELATED														
PROJECT														
TOTAL	95	1248	0	10	811	98	18	4	21	146	0	104		
LANE	竹 好	↑ ♣ ♣	↑ 4 ₁ \$, N	수 点 4 2	\(\frac{1}{2}\)	ψ1	个	ή μ	4 A 2	分	↑ ↑ ↑ 1		
	Phasi	ng F	TOR	Phasii	ng	RTOR	Phasir	ng	RTOR	Phasin	g	RTOR		
SIGNAL	Prot-F	ix <r< td=""><td>ione></td><td>Pern</td><td>n</td><td>OLA</td><td>Split</td><td>t </td><td>Auto</td><td>Split</td><td></td><td>Auto</td></r<>	ione>	Pern	n	OLA	Split	t	Auto	Split		Auto		

N/S:	De Soto A	ve W/E:	Oxr	nard St	I/S No:	24
AM/PI	M: PM	Comments: Existing				
COUN	NT DATE:	STUDY DATE	! :	GROWTH F	ACTOR:	

Volume	e/Lane/Si	gnal Conf	iguratior	ıs <u> </u>									
	NO	RTHBOU	ND	SO	SOUTHBOUND			ESTBOU	ND	E/	FASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	121	1664	167	43	1155	174	27	198	21	214	408	228	
AMBIENT													
RELATED													
PROJECT													
TOTAL	121	1664	167	43	1155	174	27	198	21	214	408	228	
LANE	. 1	수 _仲 分 2 1		, v	↑ ♠ ↑ 2 1	, t ₂ (4)	f 分 1	个		f 分	↑ ♠ ↑ 1	1	
	Phasir	ng F	RTOR	Phasii	ng l	RTOR	Phasi	ng	RTOR	Phasir	ng	RTOR	
SIGNAL	Perm	1	Auto	Pern	n	Auto	Perr	n	Auto	Perm	1	Auto	

N/S:	Winnetka Ave	W/E:	Oxnard St	I/S No:	25
AM/PM: PM	Comments:	Existing			
COUNT DAT	E:	TUDY DATE:	GROWT	H FACTOR:	

Volume	e/Lane/Sig	ınal Confi	guration	ıs										
	NO	RTHBOUN	ID	SO	SOUTHBOUND			WF	STBOL	JND	E	FASTBOUND		
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT	
EXISTING	89	1180	59	31	909	103		11	58	18	168	448	56	
AMBIENT														
RELATED														
PROJECT														
TOTAL	89	1180	59	31	909	103		11	58	18	168	448	56	
LANE	f 分 '	个		1	个 命 行 1 1	<u> </u>	ф	₽	↑ ∰ ·	4p 4p	f 矿	个 _余 ′	1 □	
	Phasin	ıg R	TOR	Phasir	ng	RTOR	ı	Phasin	ng	RTOR	Phasir	ng	RTOR	
SIGNAL	Perm	1 A	luto	Perm	n	Auto		Perm	1	Auto	Perm	1	Auto	

Critical Movements Diagram				
· ·	SouthBound A: 506 B: 31			
EastBound	Λ	WestBound	V/C RATIO	<u>LOS</u>
A: 448 B: 168		A: 87 B: 11	0.00 - 0.60	A
B. 100	 	<u> </u>	0.61 - 0.70	В
A Adjusted Through/Dight Volume	NorthBound A: 620		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 89		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = $A(N/B)$ + $B($	S/B)		
West/East Critical Movemen	ts = $B(W/B)$ + $A($	E/B)		
V/C = 620) + 31 + 11 1500	+ 448 = 0.740	LOS =	С

N/S:		De Soto Ave	•	W/E:	Bu	rbank Bl	I/S No):	26
AM/PI	M: PM		Comments: Ex	xisting					
cou	NT DATE:		STU	JDY DATE:		GRO	WTH FACTOR		

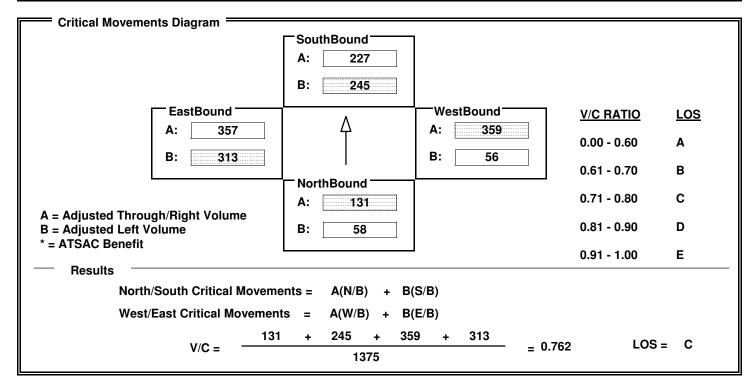
Volume	/I ana/Si	gnal Confi	iguration	. = ===									
Volume	J' Larie/Oi	giiai ooiiii	gurutioi	13									
	NO	RTHBOU	VD.	SO	SOUTHBOUND			WE	STBOU	ND	EA	STBOU	ND
	LT	TH	RT	LT	TH	RT	-	LT	TH	RT	LT	TH	RT
EXISTING	71	1285	0	0	1695	157		0	0	0	611	0	486
AMBIENT													
RELATED													
PROJECT													
TOTAL	71	1285	0	0	1695	157		0	0	0	611	0	486
LANE	♠ ♠	分	β 4 _Τ Φ		个	<u>}</u>	4	ı 企 '	个 _命 4	<u></u>	4 4 2 2 2		2
	Phasir	ng F	RTOR	Phasir	ng l	RTOR		Phasin	ng	RTOR	Phasin	g	RTOR
SIGNAL	Pern	n <r< td=""><td>none></td><td>Perm</td><td>1</td><td>Auto</td><td></td><td></td><td></td><td></td><td>Split</td><td></td><td>Auto</td></r<>	none>	Perm	1	Auto					Split		Auto

Critical Movements Diagram				
	SouthBound A: 617 B: 0			
EastBound —	Λ	WestBound	V/C RATIO	<u>LOS</u>
A: 267 B: 336		A: 0 B: 0	0.00 - 0.60	A
	<u> </u>		0.61 - 0.70	В
A Adinated Three ab / Dight Volume	NorthBound A: 428		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 71		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = $B(N/B) + A($	S/B)		
West/East Critical Movemen	ts = $A(W/B)$ + $B($	E/B)		
V/C =	+ 617 + 0	+ 336 = 0.683	LOS =	В
., 5 =	1500			

N/S:	De Soto Ave	W/E:	101 WB Ramps	I/S No:	27
AM/PM: PM	Comments:	xisting			
COUNT DATE:	ST	UDY DATE:	GROWTH	FACTOR:	

	NO	NORTHBOUND			SOUTHBOUND WESTBOUND				EASTBOUND			
EXISTING	LT 231	тн 996	RT 0	LT 0	тн 1399	RT 588	LT 267	тн 0	RT 479	LT 0	TH 0	RT 0
AMBIENT RELATED												
PROJECT												
TOTAL	231	996	0	0	1399	588	267	0	479	0	0	0
LANE	h 分 1	↑ ♠ ♠ 2	↑ 4 ↑	ф	↑ ♠ ↑ 4	1	ή ή Δ 1	1	↑ ↑ ↑	ф []	↑ ♣ ⁴	₩ ₩
SIGNAL	Phasii Prot-F		TOR	Phasi Perr		RTOR none>	Phasin Split		RTOR Auto	Phasi	ng	RTOR

Critical Movements Diagram				
	A: 588 B: 0			
EastBound —	Λ	WestBound	V/C RATIO	LOS
A: 0		A: 249 B: 249	0.00 - 0.60	A
] ' .		0.61 - 0.70	В
	NorthBound A: 498		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 231		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
North/South Critical Moveme	ents = $B(N/B) + A($	S/B)		
West/East Critical Movemen	its = $A(W/B) + A(W/B)$	(E/B)		
V/C = 231	l + 588 + 24	9 + 0 = 0.749	LOS =	С
V/C =	1425	= 0.743		-


N/S:		De Soto Ave	e	W/E:	101	EB Ramps	I/S No:	28
AM/PI	M: PM		Comments: Ex	kisting				
COU	NT DATE:		STU	IDY DATE:		GROW	TH FACTOR:	

	NO	RTHBOU	ND -	SO	UTHBOL	IND -	WI	STBOU	IND -	FΔ	STBOU	ND •
EVICTING	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING AMBIENT	0	733	239	855	770	0	0	0	0	515	3	219
RELATED												
PROJECT												
TOTAL	0	733	239	855	770	0	0	0	0	515	3	219
LANE		分	;	, v	수 🚓 [∠] 2	<u></u>	ф П	个 命 4	ή η ην 	1 1	^ _@ ^	<u> </u>
	Phasir	ng I	RTOR	Phasii	ng	RTOR	Phasir	ng	RTOR	Phasin	g	RTOR
SIGNAL	Perm	1	Auto	Prot-F	Fix <	none>				Split		Auto

Critical Movements Diagram				
	SouthBound A: 385 B: 470			
EastBound —	Λ	WestBound	V/C RATIO	LOS
A: 259 B: 259		A: 0 B: 0	0.00 - 0.60	Α
J. 233	<u></u> '		0.61 - 0.70	В
A Adiiyated Thyeyab / Dight Volume	NorthBound A: 244		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 0		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = $A(N/B) + B($	S/B)		
West/East Critical Movemen	ts = $A(W/B)$ + $A($	E/B)		
244	+ 470 + 0	+ 259 = 0.683	LOS =	В
V/C =	1425	= 0.003		_

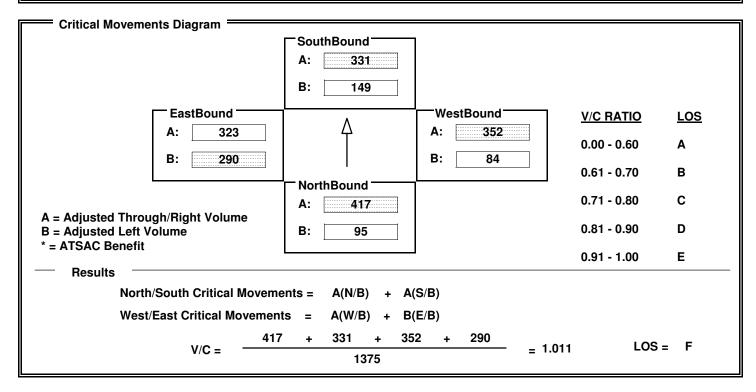
N/S:		De Soto Ave		W/E:	Ve	ntura Bl	I/S No):	29
AM/PI	M: PM	Co	omments: Exis	ting					
cou	NT DATE:		STUD	Y DATE:		GRO	WTH FACTOR:		

Volume	/Lane/Sig	anal Conf	iauration										
Volume	-/ Larie/Sig	gilai Colli	iguratioi	13									
	NO	RTHBOU	ND	SO	UTHBOL	IND	L	WE	STBOU	ND	E	STBOUN	ID
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	58	188	74	446	227	336		56	1077	430	313	1003	68
AMBIENT													
RELATED							Ī						
PROJECT							Ī						
						· 1	_		T	T 1		1	
TOTAL	58	188	74	446	227	336		56	1077	430	313	1003	68
LANE	4	↑ ♠ ₲ 1 1	Lb (Hb	4 分 2	个	1 I		, N	分 ☆ 分	<u>}</u>	∮ ∯ 1	个 命 句 2 1	<u>}</u>
	Phasin	ng F	RTOR	Phasii	ng	RTOR		Phasir	ng l	RTOR	Phasii	ng	RTOR
SIGNAL	Split		Auto	Spli	i	OLA		Perm	1	OLA	Prot-F	ix	Auto

N/S:	Winnetka Ave	W/E:	101 WB Ramps	I/S No:	30
AM/PM: PM	Comments:	Existing			
COUNT DATE:	ST	UDY DATE:	GROWTH	H FACTOR:	

Volume	/Lane/Siç	gnal Conf	iguration	ıs <u> </u>								
	NO	RTHBOU	ND.	SO	UTHBOL	IND	W	ESTBOU	ND	LE	ASTBOU	ND
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	195	771	0	0	775	281	295	12	525	0	0	0
AMBIENT												
RELATED												
PROJECT												
TOTAL	195	771	0	0	775	281	295	12	525	0	0	0
LANE	f 分	☆ ☆ ☆ 2	_ t> 4±>	, N	个	<u>}</u>	h 分 1	个 _余 4	1	ф	个 	↑ \p \d\p
	Phasir	ng F	RTOR	Phasir	ng	RTOR	Phasir	ng	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	ix <	none>	Perm	1 <	none>	Spli	t	Auto			

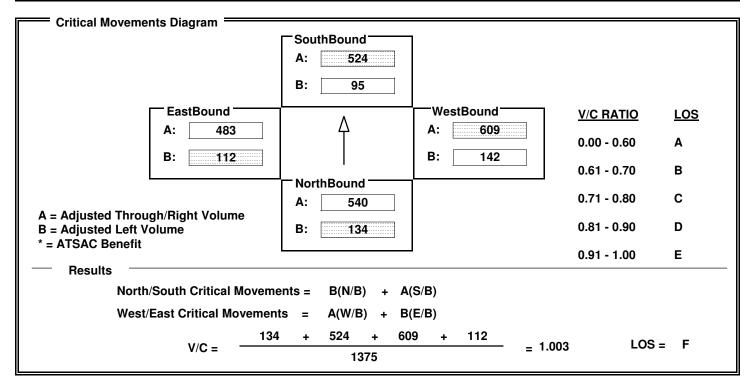
Critical Movements Diagram				
ornida movemento Biagram	SouthBound A: 388 B: 0			
EastBound —	1 ^	WestBound	V/C RATIO	<u>LOS</u>
A: 0 B: 0		A: 277 B: 277	0.00 - 0.60	Α
	<u> </u>		0.61 - 0.70	В
A Adinated Through (Bight Volume	NorthBound A: 386		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 195		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = $B(N/B) + A($	(S/B)		
West/East Critical Movemen	ts = $A(W/B)$ + $A($	E/B)		
V/C = 195	5 + 388 + 27	7 + 0 = 0.604	LOS =	В
V/C =	1425	= 0.004		_

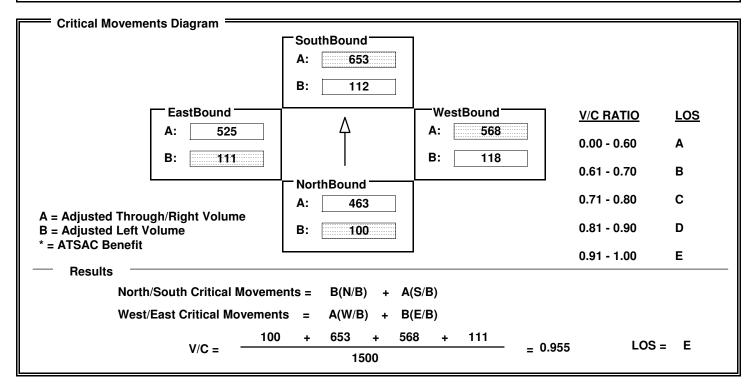

N/S:	Winnetka Ave	W/E:	101 EB Ramps	I/S No:	31
AM/PM: PN	Comments:	Existing			
COUNT DAT	E:	STUDY DATE:	GROWTH	H FACTOR:	

	NO	RTHBOU	ND L	80	UTHBOL	IND L	14/1	STBOU	IND L	EA	STBOU	ND L
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	0	667	260	350	652	0	0	0	0	407	0	188
AMBIENT												
RELATED												
PROJECT												
TOTAL	0	667	260	350	652	0	0	0	0	407	0	188
LANE	4 &	↑ ♠ ↑ 1	, , , , ,	, v	个		4 於	个 命 '	φ φ φ		全	1 I
	Phasir	ng l	RTOR	Phasir	ng	RTOR	Phasir	ng	RTOR	Phasin	g	RTOR
SIGNAL	Perm	1	Auto	Prot-F	ix	<none></none>				Split		Auto

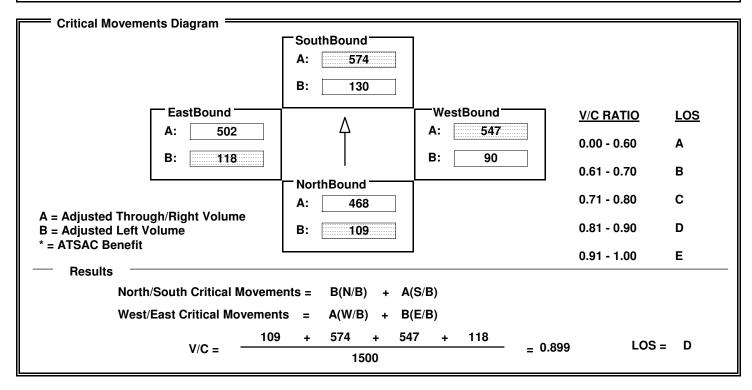
Critical Movements Diagram				
· ·	SouthBound A: 326 B: 350			
EastBound —	Λ	WestBound	V/C RATIO	<u>LOS</u>
A: 188 B: 407		A:0	0.00 - 0.60	Α
	L., ., <u>,</u> '		0.61 - 0.70	В
A Adinated Through/Dight Volume	NorthBound A: 334		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 0		0.81 - 0.90	D
* = ATSAC Benefit Results			0.91 - 1.00	E
North/South Critical Movement	ents = A(N/B) + B(S/R)		
West/East Critical Movemen	` ,	-		
	` ,	E/B)		
V/C = 334	+ 350 + 0 1425	+ 407 = 0.766	LOS =	С

N/S:	Winnetka Ave	W/E:	Ventura BI	I/S No:	32
AM/PM: PM	Comments:	xisting			
COUNT DATE:	ST	UDY DATE:	GRO	WTH FACTOR:	

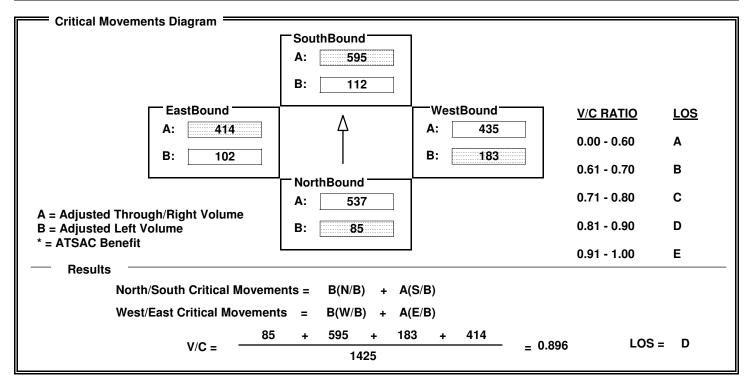

Volume	/Lane/Sigr	nal Confi	guration	is								
	NOR	THBOUN	D	SO	UTHBOL	IND	W	ESTBOU	ND	E/	STBOU	ND.
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	95	378	39	271	331	195	84	704	289	290	868	100
AMBIENT												
RELATED												
PROJECT												
TOTAL	95	378	39	271	331	195	84	704	289	290	868	100
LANE	∯ ∯ ↑		lþ d√þ	փ մի 2	个	<u>}</u>	f 分 1	↑ ∰ 1 2	\(\frac{1}{2} \ \big \big \displays{1} \\ \frac{1}{2} \ \frac{1}{2} \\ 1	f 分	↑ ∰ ↑ 2	<u>ф</u> фф
	Phasing	ı R	TOR	Phasir	ng	RTOR	Phasi	ng	RTOR	Phasir	ng	RTOR
SIGNAL	Split	Α	uto	Split	t	OLA	Pern	n	OLA	Prot-F	ix	Auto


N/S:		De Soto Av	/e	W/E:	Sat	icoy St	I/S No:	1
AM/PI	M: AM		Comments:	Cumulative	Base			
COU	NT DATE:		SI	TUDY DATE:		GRO	WTH FACTOR:	

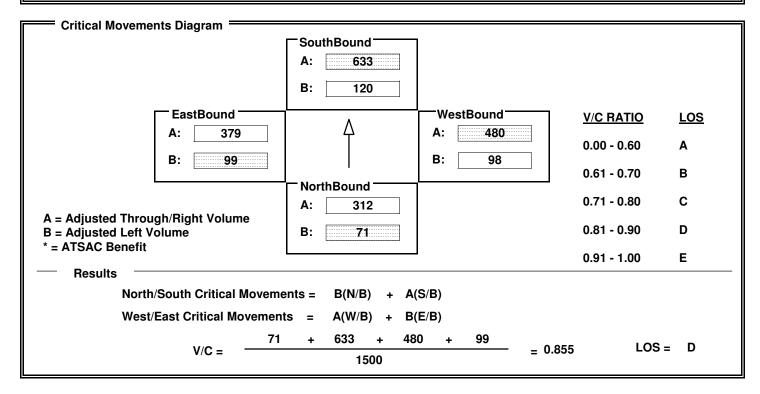
Volume	/Lane/Sig	nal Conf	iguration	• ===								
Volume	/ Lanc/Oig	,a. 00	gurudon	•								
	NOF	RTHBOU	ND	SO	UTHBOU	ND	W	ESTBOUN	ND.	EA	STBOUN	D
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	134	949	130	95	1426	146	142	1148	69	112	879	87
AMBIENT												
RELATED												
PROJECT												
TOTAL	404	0.40	400		4400	4.40	4.40	4440		440	0=0	
TOTAL	134	949	130	95	1426	146	142	1148	69	112	879	87
LANE	¶ 分 ′	↑ ♠ ♠ 1 1	ſ ^δ Φτ ^δ	N N	↑ ♠ ႖ 2 1		∮ ∰	个	\$	ή ή Δ 1		, tþ 4 <u>t</u> þ
	Phasin	g F	RTOR	Phasin	ig l	RTOR	Phasi	ng l	RTOR	Phasin	g l	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto	Perr	n .	Auto	Prot-F	ix	Auto


N/S:	Mason Ave	W/E:	Saticoy St	I/S No:	2
AM/PM: AN	Comments	: Cumulative Bas	е		
COUNT DAT	E:	STUDY DATE:	GROW	/TH FACTOR:	

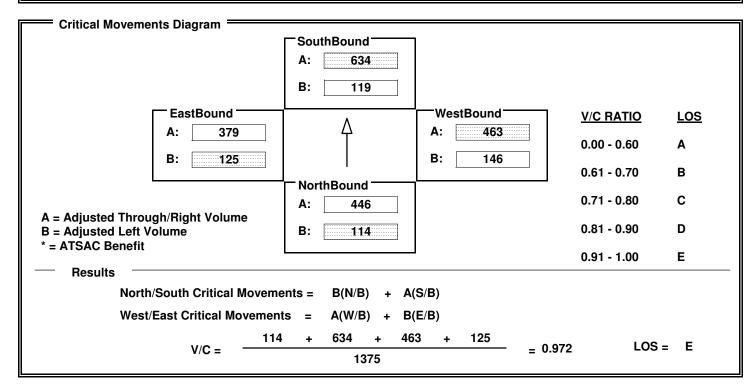
Volume	/Lane/Sig	gnal Confi	guration	s ====								
	NO	RTHBOUN	ID.	SO	SOUTHBOUND			/ESTBOU	ND	E	STBOUN	ID
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	100	844	82	112	1185	121	118	1044	92	111	965	85
AMBIENT												
RELATED												
PROJECT												
TOTAL	100	844	82	112	1185	121	118	1044	92	111	965	85
LANE	析 分 ·	↑ ♠ ♠ 1 1	↑	竹 矿	↑ ♠ ↑ 1 1	<u>}</u>	∮ ∰	个		f 分	个 命 仓 1 1	
	Phasin	ng F	TOR	Phasii	ng I	RTOR	Phas	ing	RTOR	Phasir	ng	RTOR
SIGNAL	Perm	1 /	Auto	Pern	n	Auto	Per	m	Auto	Perm	1	Auto


N/S:	Winnet	ka Ave	W/E:	Sati	coy St	I/S No:	3
AM/P	M: AM	Comments:	Cumulative I	Base			
cou	NT DATE:	S	TUDY DATE:		GROW	/TH FACTOR:	

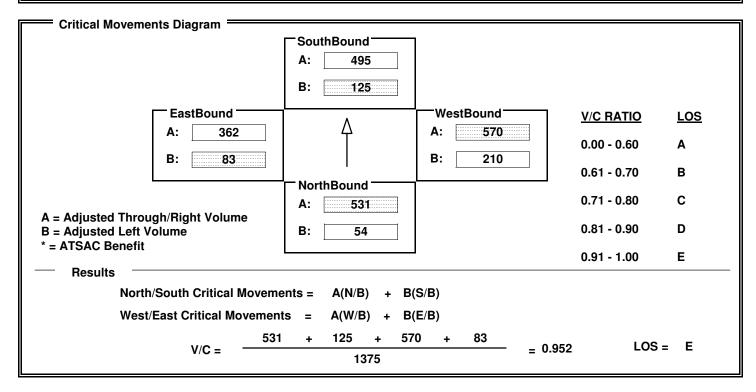
Volume	e/Lane/Si	gnal Conf	iguration	ıs ====								
	NO	RTHBOU	ND	SO	UTHBOU	ND	W	ESTBOU	ND	EA	STBOUN	ID
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	109	817	119	130	1148	133	90	960	133	118	877	127
AMBIENT												
RELATED												
PROJECT												
TOTAL	109	817	119	130	1148	133	90	960	133	118	877	127
LANE	竹 好	个 命 句 1 1		, N	↑ ♠ ↑ 2	1 I	竹 分	个 命 行 1 1	<u>ф</u> ф ф	f 分	个 命 仓 1 1	
	Phasii	ng l	RTOR	Phasii	ng I	RTOR	Phasi	ng	RTOR	Phasir	ng	RTOR
SIGNAL	Pern	1	Auto	Pern	n	Auto	Pern	n	Auto	Perm	1	Auto


N/S:		De Soto Av	re	W/E:	Sher	man Way	I/S No:	4
AM/PI	M: AM		Comments: (Cumulative	Base			
COU	NT DATE:		ST	UDY DATE:		GROW	TH FACTOR:	

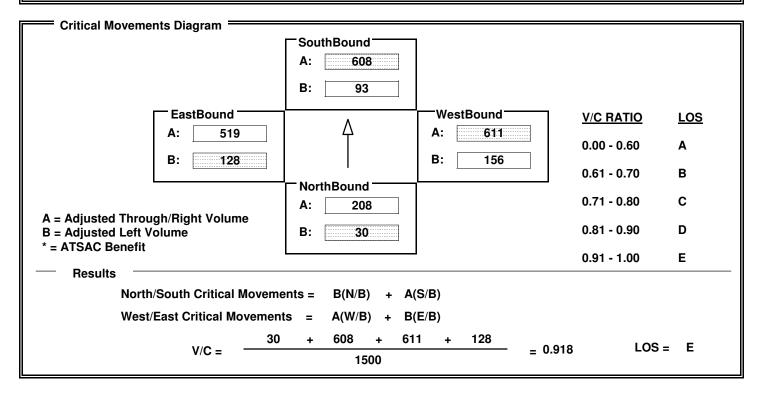
- Volume	/Lana/Sia	gnal Conf	iauration	. = =									
Volume	s/Lane/Si	gilai Colli	iguratioi	15									
	NO	RTHBOU	ND	SO	UTHBOU	ND	ı 1	W	ESTBOU	VD.	E	ASTBOUN	ID
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	85	970	104	112	1617	167		183	1188	116	102	1152	89
AMBIENT													
RELATED													
PROJECT													
									1				
TOTAL	85	970	104	112	1617	167		183	1188	116	102	1152	89
										_			
	∮ ₽	$\uparrow \Leftrightarrow \uparrow \downarrow$	↑ ↑ ↑ ↑ ↑	ላ ∂	수 🚓 ל	} ₩ ₩		ሳ 😥	个 魚 仓	\	ላ ₽	个 命 分	; p dp ;
LANE	1	1 1		1	2 1				2 1		1	2 1	
							l l		_ _ -				
	Phasir	ng F	RTOR	Phasii	ng l	RTOR		Phasii	ng l	RTOR	Phasi	ng	RTOR
SIGNAL	Perm	1 .	Auto	Pern	n	Auto] [Prot-F	ix	Auto	Prot-F	-ix	Auto
	- 0111			- 3		2	j l			<i></i>			


N/S:	Mason Ave	W/E:	Sherman Way	I/S No:	5
AM/PM: AM	Comment	s: Cumulative Bas	е		
COUNT DAT	E:	STUDY DATE:	GROWI	TH FACTOR:	

Volume	/I ane/Sid	gnal Conf	iguration	. = ==									
Volume	, Lancioi	jiiai ooiii	iguiutioi										
	NO	RTHBOU	ND	SO	UTHBOU	ND	ιL	WE	STBOU	ND	E/	ASTBOUN	۷D
	LT	TH	RT	LT	TH	RT	•	LT	TH	RT	LT	TH	RT
EXISTING	71	580	44	120	1118	147		98	1341	98	99	1071	65
AMBIENT													
RELATED													
PROJECT													
TOTAL	71	580	44	120	1118	147		98	1341	98	99	1071	65
LANE	∮ ♣	↑ ♠ ♠ 1 1	Lb dtb	竹 分	个 命 句 1 1		[↑ ♠ ↑ 2 1	<u>ф</u> ф ф	h 分 1	수 슈 숙 2	\(\frac{1}{2} \ \pi \\ \frac{1}{1} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Phasir	ng F	RTOR	Phasii	ng F	RTOR		Phasin	ig l	RTOR	Phasir	ng	RTOR
SIGNAL	Perm	1	Auto	Pern	n .	Auto		Perm	1	Auto	Pern	n	Auto
							_						


N/S:	Winnetka Ave	W/E:	Sherman Way	I/S No:	6
AM/PM: A	M Comments	: Cumulative Bas	е		
COUNT DA	TE:	STUDY DATE:	GROV	VTH FACTOR:	

Volume	e/Lane/Sig	ınal Confi	guratior	ıs										
	NO	RTHBOUN	ID	SO	SOUTHBOUND			WE	WESTBOUND			FASTBOUND		
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT	
EXISTING	114	800	92	119	1267	122		146	1190	198	125	980	157	
AMBIENT														
RELATED														
PROJECT														
TOTAL	114	800	92	119	1267	122		146	1190	198	125	980	157	
LANE	f 分 d	↑ ♠ ♠ 1 1	δ φ _τ δ		个 _价 行 2	<u>†</u>			个 _命 仓 2 1		f 分	↑ ∰ ́	1	
SIGNAL	Phasin Prot-F		TOR Auto	Phasir Prot-F		RTOR Auto		Phasin Prot-F		RTOR Auto	Phasi		RTOR Auto	


N/S:	De Soto Ave	W/E:	Vanowen St	I/S No:	7
AM/PM: A	M Comments	s: Cumulative Base)		
COUNT DAT	TE:	STUDY DATE:	GROW	TH FACTOR:	

Volume	e/Lane/Sig	gnal Conf	iguration	ıs ——									
	NO	RTHBOU	ND	SOUTHBOUND			ı [WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	54	955	106	125	1299	186		210	1139	117	83	1003	82
AMBIENT													
RELATED													
PROJECT													
TOTAL	54	955	106	125	1299	186] [210	1139	117	83	1003	82
LANE	有	个		, v	个] [↑ ♠ ↑ 2	<u>}</u>	♠ ☆ 1	2	↑ ↑ ₩ 1
	Phasir	ng F	RTOR	Phasii	ng I	RTOR		Phasin	ig l	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto		Prot-F	ix	Auto	Prot-l	Fix	Auto

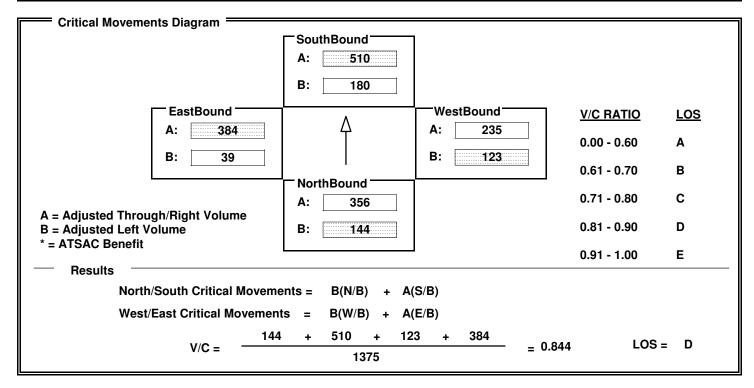
N/S:	Mason Ave	W/E:	Vanowen St	I/S No:	8
AM/PM: AM	Comment	s: Cumulative Base)		
COUNT DAT	E:	STUDY DATE:	GROW	TH FACTOR:	

Volume	e/Lane/Sig	anal Conf	iguration	ıs ——									
	NO	RTHBOU	ND	SO	SOUTHBOUND			WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	30	368	47	93	1010	206	156	1125	97	128	959	78	
AMBIENT													
RELATED													
PROJECT													
TOTAL	30	368	47	93	1010	206	156	1125	97	128	959	78	
LANE	1	个 命 句 1 1	; r> 4⊤>	1	个		ճ մ	↑ ☆ ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑		f 分·	↑ ♠ ↑ 1	\(\frac{1}{2}\) \(\psi\) \(\psi\) \(\psi\) \(\psi\) \(\psi\)	
	Phasir	ng F	RTOR	Phasir	ng F	RTOR	Pha	sing	RTOR	Phasir	ng	RTOR	
SIGNAL	Perm	1	Auto	Perm	1	Auto	Pe	rm	Auto	Perm	1	Auto	

N/S:	Winnetka Ave	W/E:	Vanowen St	I/S No:	9
AM/PM: AM	Comments:	Cumulative	Base		
COUNT DATE:	ST	UDY DATE:	G	ROWTH FACTOR:	

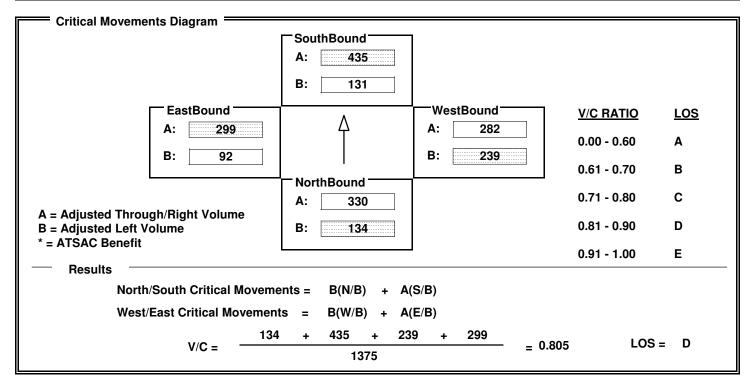
Volume	e/Lane/Sig	gnal Conf	iguration	s								
	NO	RTHBOU	ND	SOUTHBOUND			W	ESTBOU	ND	FASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	91	697	105	122	1235	141	117	1049	106	69	837	86
AMBIENT												
RELATED												
PROJECT												
TOTAL	91	697	105	122	1235	141	117	1049	106	69	837	86
LANE	∮ ∰ 1 1	个 命 句 1 1	 	1	个 余 仓 1 1	<u> </u>	竹 分	个	<u>}</u>	f 分	个	1
	Phasir	ng I	RTOR	Phasir	ng	RTOR	Phasi	ing l	RTOR	Phasir	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto	Peri	m	Auto	Pern	1	Auto
								-				

Critical Movements Diagram				
	SouthBound A: 688 B: 122			
EastBound —	Λ	WestBound	V/C RATIO	<u>LOS</u>
A: 462 B: 69	$\bigcap_{i=1}^{n} \bigcap_{j=1}^{n} \bigcap_{i=1}^{n} \bigcap_{j=1}^{n} \bigcap_{j=1}^{n} \bigcap_{i=1}^{n} \bigcap_{j=1}^{n} \bigcap_{i=1}^{n} \bigcap_{j=1}^{n} \bigcap_{i=1}^{n} \bigcap_{j=1}^{n} \bigcap_{j=1}^{n} \bigcap_{i=1}^{n} \bigcap_{j=1}^{n} \bigcap_{i=1}^{n} \bigcap_{j=1}^{n} \bigcap_{i=1}^{n} \bigcap_{j=1}^{n} \bigcap_{i=1}^{n} \bigcap_{j=1}^{n} \bigcap_{j=1}^{n} \bigcap_{j=1}^{n} \bigcap_{i=1}^{n} \bigcap_{j=1}^{n} \bigcap_{j$	A: 578 B: 117	0.00 - 0.60	A
			0.61 - 0.70	В
A Adimated Threewall /Dight Volume	NorthBound A: 401		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 91		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
North/South Critical Moveme	ents = $B(N/B) + A($	S/B)		
West/East Critical Movemen	ts = A(W/B) + B(E/B)		
91	+ 688 + 57	8 + 69 ₌ 1.001	LOS =	F
V/C =	1425	= 1.001	200 -	•

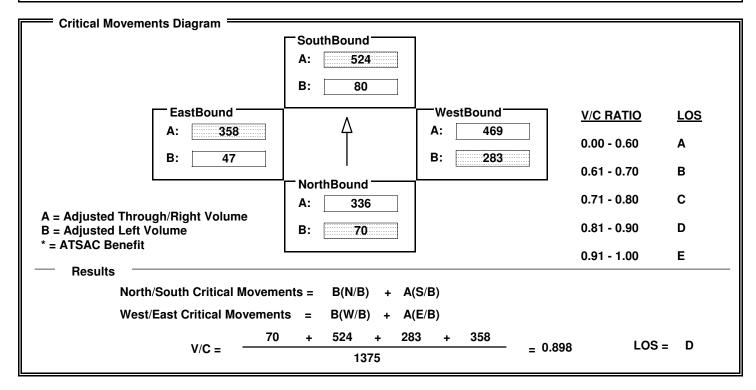

N/S:	Shoup A	w/E:	Victo	ory Bl	I/S No:	10			
AM/PI	AM/PM: AM Comments: Cumulative Base								
COU	NT DATE:	STUDY DATE	i:	GROWTH FA	CTOR:				

Volume	e/Lane/Sig	anal Conf	iauration	. ===									
Volume	e/Lane/Siç	gilai Colli	iguratioi	15									
	NO	RTHBOU	VD	SO	UTHBOU	ND	WESTBOUND			ND	EA	STBOUN	1D
	LT	TH	RT	LT	TH	RT		т.	TH	RT	LT	TH	RT
EXISTING	110	749	50	133	1351	77	1	07	813	83	103	984	283
AMBIENT													
RELATED													
PROJECT													
					1								
TOTAL	110	749	50	133	1351	77	1	07	813	83	103	984	283
	∮	수 ሒ な	_ ∱ (}	ላ ঐ	$\uparrow \Leftrightarrow \uparrow \downarrow \uparrow$	\	Ą		个 兪 4		∮ ☆ '	↑ <u>A</u> , 1	<i>₹</i> ₽ ₩
LANE	1	2 1 1	1	1	1 1	, 	1	1	2	<u></u>	1	1 1	
	•	_		•	• •		•					<u>. </u>	'
	Phasir	ng F	RTOR	Phasi	ng l	RTOR	P	hasiı	ng	RTOR	Phasir	ıg	RTOR
SIGNAL	Perm	1	Auto	Pern	n	Auto		Pern	n	Auto	Perm	1	Auto

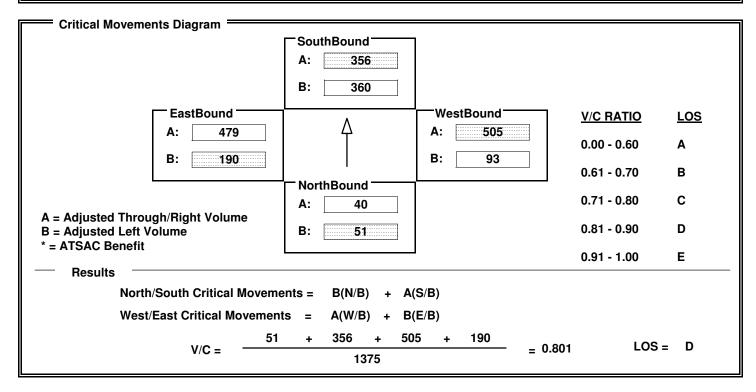
Critical Movements Diagram				
	SouthBound A: 714 B: 133			
EastBound		WestBound	V/C RATIO	<u>LOS</u>
A: 634 B: 103		A: 407 B: 107	0.00 - 0.60	Α
5. 100			0.61 - 0.70	В
A AP A TIME A POLICY I	NorthBound A: 375		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 110		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = $B(N/B) + A($	S/B)		
West/East Critical Movemen	its = $B(W/B) + A($	E/B)		
V/C = 110) + 714 + 10	7 + 634 = 1.043	LOS =	F
V/C =	1500	= 1.040	====	


N/S:	Т	opanga Cany	on Bl	W/E:	Vi	ctory Bl	I/S No:	11
AM/P	M: AM		Comments:	Cumulative	Base			
COU	NT DATE:		S	TUDY DATE:		GRO	WTH FACTOR:	

── Volume	/Lane/Sig	inal Conf	iauration											
Volume	-/ Lane/Oig	jilai ooili	iguration											
	NO	RTHBOU	ND	SO	SOUTHBOUND			WESTBOUND			E	EASTBOUND		
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT	
EXISTING	144	869	200	180	1422	108		223	705	126	70	1007	144	
AMBIENT														
RELATED														
PROJECT														
TOTAL		000	222	400	1400	100		000	705	100	70	4007	444	
TOTAL	144	869	200	180	1422	108		223	705	126	70	1007	144	
LANE	. 1.	↑ ♠ ♠ 2 1	, I _⊅ 4 ¹ ⊅	析 1	个		փ 2	V	수 🚓 ⁴ 3	↑	4 ¢	↑ ∰ ↑	1	
	Phasin	ng F	RTOR	Phasi	ng l	RTOR		Phasii	ng	RTOR	Phas	ing	RTOR	
SIGNAL	Prot-F	ix	Auto	Prot-F	Fix	Auto		Prot-F	ix	OLA	Prot-	Fix	Auto	


N/S:		Canoga Av	re	W/E:	Vic	tory BI	I/S No:	12	
AM/PM: AM Comments: Cumulative Base									
cou	NT DATE:		ST	UDY DATE:		GRO	OWTH FACTOR:		

Volume	/I ane/Sid	gnal Conf	iguration	. = ==								
Volume	, Lancioi	giiai ooiii	iguratioi	13								
	NO	RTHBOU	ND	SO	SOUTHBOUND			WESTBOUND			ASTBOUN	D
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	134	873	118	131	1207	98	239	1064	65	92	898	163
AMBIENT												
RELATED												
PROJECT												
		1			1	·						
TOTAL	134	873	118	131	1207	98	239	1064	65	92	898	163
	ी <i>दि</i> े	$\uparrow \Leftrightarrow \uparrow$, φ (φ	4 ₽		4 4	ላ ₽	分最行	44 4	4 ₽	$\uparrow \Leftrightarrow \uparrow$	_ζ φ φ
LANE	1	2 1		1	2 1		1	3 1		1	3	1
		, ,										
	Phasir	ng F	RTOR	Phasi	ng	RTOR	Phas	sing	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto	Prot	-Fix	OLA	Prot-F	ix	OLA


N/S:	De Soto Ave	W/E:	Victory BI	I/S No:	13
AM/PM: AM	Comments:	Cumulative	Base		
COUNT DATE:	S	TUDY DATE:		GROWTH FACTOR:	

Volume	/Lane/Sig	nal Confi	guration	ıs ——								
	NOF	RTHBOUN	VD	SOUTHBOUND			W	/ESTBOUN	VD	E	ASTBOUN	ID
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	70	844	165	80	1386	187	515	1406	101	85	1027	46
AMBIENT												
RELATED												
PROJECT												
TOTAL	70	844	165	80	1386	187	515	1406	101	85	1027	46
LANE	ή _β 4	NV V	<u>Γ</u> Φ Φ _Τ Φ	, v	수 _仲 수 2 1	\$ \psi \psi \psi \psi \psi \psi \psi \psi	Φ ∯ 2	3	1	∮ ∰	2 1	<u>}</u>
	Phasin	g R	TOR	Phasii	ng l	RTOR	Phasi	ing I	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-Fi	x A	Auto	Prot-F	ix	Auto	Prot-	Fix <	none>	Prot-l	Fix	Auto

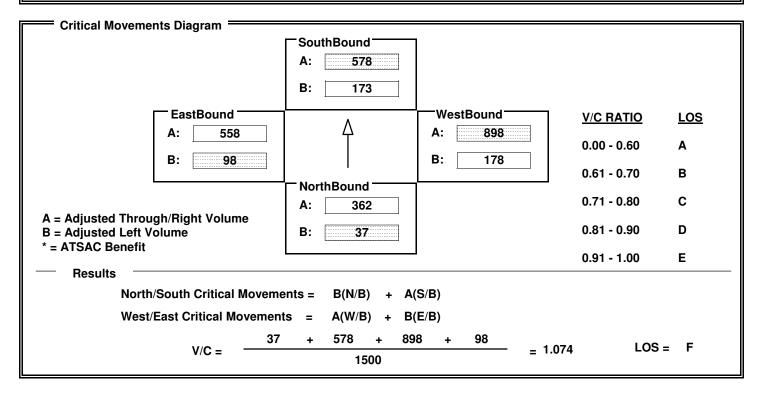
N/S:	Mason Ave	W/E:	Victory BI	I/S No:	14
AM/PM: AM	Comments	Cumulative Bas	e		
COUNT DATE	≣ :	STUDY DATE:	GROV	VTH FACTOR:	

Volume	/Lane/Signal	Configuration	ıs							
	NORTH	BOUND	SOUT	HBOUND	WE	STBOUND		EASTBOUND		
	LT T	H RT	LT	TH RT	LT	TH RT		TH	RT	
EXISTING	51 5	4 25	360	275 647	93	1514 11 ⁻	1 190	1437	161	
AMBIENT										
RELATED										
PROJECT										
TOTAL	51 5	4 25	360 2	275 647	93	1514 11°	1 190	1437	161	
LANE			りかり 1 1	↑ ↑ ↑ 1		↑ 歳 ☆ ♪ 3 1		→ ♣ ←	1 I	
	Phasing	RTOR	Phasing	RTOR	Phasir	ng RTOR	Phas	ing	RTOR	
SIGNAL	Prot-Fix	Auto	Prot-Fix	<none></none>	Prot-F	ix <none< td=""><td>> Prot-</td><td>Fix</td><td>Auto</td></none<>	> Prot-	Fix	Auto	

N/S:	Winnetka Ave	W/E:	Victory BI	I/S No:	15
AM/PM: AN	Comments	Cumulative B	ase		
COUNT DAT	E:	STUDY DATE:	GROW	TH FACTOR:	

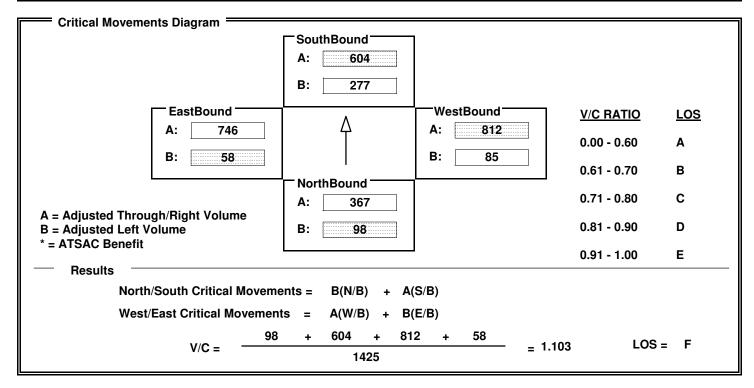
Volume	/Lane/Sig	nal Conf	iguration	s ====									
	NOF	RTHBOU	ND	SO	SOUTHBOUND			WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	109	841	199	230	1077	234	317	1562	70	63	1309	235	
AMBIENT													
RELATED													
PROJECT													
TOTAL	109	841	199	230	1077	234	317	1562	70	63	1309	235	
LANE	f 分 4		_ t> 4±>	, v	个	Lb 44p	<u></u>	个		竹 分	2 1 1	ф ф ф	
	Phasin	g F	RTOR	Phasir	ng I	RTOR	Phasir	ng F	RTOR	Phasir	ng	RTOR	
SIGNAL	Prot-Fi	X	Auto	Prot-F	ix	Auto	Prot-F	ix	Auto	Prot-F	ix	Auto	

Critical Movements Diagram				
	SouthBound A: 437 B: 230			
EastBound	Λ	WestBound	V/C RATIO	<u>LOS</u>
A: 515 B: 63		A: 544 B: 317	0.00 - 0.60	A
B	No all Down d	J	0.61 - 0.70	В
A Adjusted Through/Dight Volume	NorthBound A: 520		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 109		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				_
North/South Critical Moveme	ents = $A(N/B) + B($	(S/B)		
West/East Critical Movemen	ts = $B(W/B)$ + $A($	(E/B)		
V/C = 520) + 230 + 31 1375	7 + 515 ₌ 1.151	LOS =	F


N/S:	Topham St	W/E:	Victory BI	I/S No:	16
AM/PM: AM	Comments:	Cumulative E	Base		
COUNT DATE	≣:s	TUDY DATE:	GROW	TH FACTOR:	

Volume		al Configuratio	_	201112		TROUBLE			
	NORT	HBOUND	SOUTH	BOUND	WES	TBOUND	EASTBOUND		
	LT	TH RT	LT T	H RT	LT	TH RT	LT	TH RT	
EXISTING	373	0 5	0 0	0	0	2015 0	0	1288 451	
AMBIENT									
RELATED									
PROJECT									
TOTAL	373	0 5	0 0	0	0 2	2015 0	0	1288 451	
LANE	ή _μ γ		4 & A		ή ή 수 2		4 £ 4		
	Phasing	RTOR	Phasing	RTOR	Phasing	RTOR	Phasin	g RTOR	
SIGNAL	Prot-Fix	<none></none>	Perm	<none></none>	Perm	<none></none>	Perm	OLA	

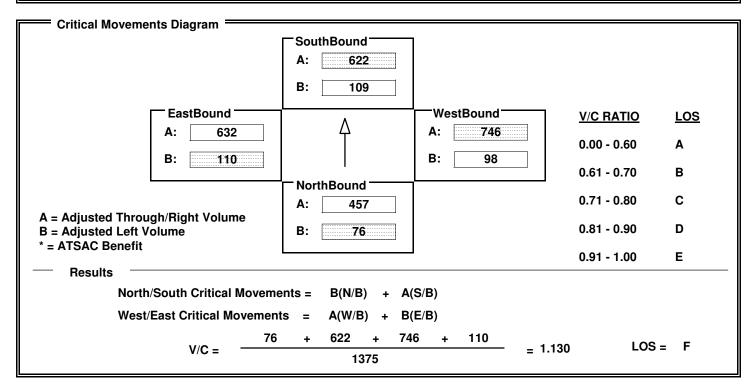
Critical Movements Diagram				
	SouthBound A: 0 B: 0			
EastBound —	1 ^	WestBound	V/C RATIO	<u>LOS</u>
A: 644 B: 0		A: 1008 B: 0	0.00 - 0.60	Α
	<u> </u>		0.61 - 0.70	В
A Adinated Three ab / Dight Volume	NorthBound A: 5		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 373		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = $B(N/B) + A($	(S/B)		
West/East Critical Movemen	ts = A(W/B) + B((E/B)		
V/C = 373	3 + 0 + 100	$\frac{08 + 0}{} = 0.969$	LOS =	E
V/0 =	1425			


N/S:	Corbin Ave	W/E:	Victory BI	I/S No:	17
AM/PM: AM	Comments:	Cumulative	Base		
COUNT DATE	:s	TUDY DATE:		GROWTH FACTOR:	

Volume	/I ano/Si	gnal Conf	iguration	. = ===								
Volume	z/Lanc/Si	gilai Colli	iguratioi	13								
	NO	RTHBOU	ND	SO	SOUTHBOUND			VESTBOU	ND	E/	ASTBOUN	ΝD
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	37	627	97	173	833	323	178	1633	163	98	1099	16
AMBIENT												
RELATED												
PROJECT												
TOTAL	37	627	97	173	833	323	178	1633	163	98	1099	16
LANE	f 矿	个 命 句 1 1	; r> 4 _T >	f 分	个	<u> </u>	ή ₍) 1	个 命 仓 1 1 1	<u>↑</u>	f 分	个 命 仓 1 1	²
	Phasir	ng F	RTOR	Phasir	ng l	RTOR	Phas	ing	RTOR	Phasi	ng	RTOR
SIGNAL	Pern	n .	Auto	Perm	1	Auto	Per	m	Auto	Pern	n	Auto

N/S:		Tampa Ave	W/E:	Victory	ВІ	I/S No:	18
AM/P	M: AM	Comm	ents: Cumulative	Base			
coul	NT DATE:		STUDY DATE:		GROWTH FA	CTOR:	

Volume	e/Lane/Sig	nal Conf	iguration										
Volume	or Larier Oil	giiai Ooiii	iguration	.5									
	NO	RTHBOU	ND	SO	UTHBOU	ND	Ц	WI	STBOU	ND	E	ASTBOUN	ID.
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	98	733	113	277	1208	234		85	1531	92	58	1445	46
AMBIENT													
RELATED													
PROJECT													
TOTAL		700	440	077	1000	004		0.5	4504	00		4445	40
TOTAL	98	733	113	277	1208	234		85	1531	92	58	1445	46
LANE		수 命 年 2	; rÞ 4πÞ	, v	수 슈 숙 2	<u>\</u>	[h 沪 1	个 余 行 1 1		∮ ∱	个 余 仓 1 1	
	Phasir	ng F	RTOR	Phasi	ng	RTOR		Phasir	ng	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto		Perm	1	Auto	Pern	n	Auto

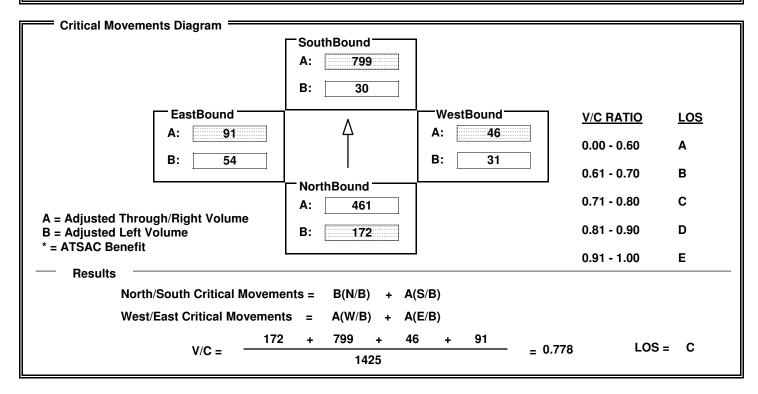

N/S:	Wilbur Ave	W/E:	Victory BI	I/S No:	19
AM/PM: AM	Comments:	Cumulative	Base		
COUNT DATE:	ST	UDY DATE:	GRO	OWTH FACTOR:	

Volume	e/Lane/Sig	nal Conf	iguration	ıs											
	NO	NORTHBOUND			SOUTHBOUND			WE	STBOU	ND	E	EASTBOUND			
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT		
EXISTING	78	606	101	173	1239	167		78	1607	112	61	1651	129		
AMBIENT															
RELATED															
PROJECT															
TOTAL	78	606	101	173	1239	167		78	1607	112	61	1651	129		
LANE	f	个		竹 矿	个			ճ <i>ֆ՝</i> '	↑ ♠ ↑ 1 1	<u>}</u> ф ф	f 分	个	\(\frac{1}{2}\) \(\psi\) \(\psi\) \(\psi\) \(\psi\)		
	Phasin	ng F	RTOR	Phasii	ng I	RTOR		Phasin	ig l	RTOR	Phasi	ng	RTOR		
SIGNAL	Perm	1	Auto	Pern	n .	Auto		Perm	1	Auto	Perr	n	Auto		

Critical Movements Diagram				
J	SouthBound A: 703 B: 173			
EastBound	<u> </u>	WestBound	V/C RATIO	LOS
A: 890 B: 61		A: 860 B: 78	0.00 - 0.60	A
B	No with Down of	J	0.61 - 0.70	В
A Adimated Threewall /Dight Volume	NorthBound A: 354		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 78		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = $B(N/B) + A($	(S/B)		
West/East Critical Movemen	ts = B(W/B) + A((E/B)		
V/C =	+ 703 + 78 1500	3 + 890 = 1.166	LOS =	F

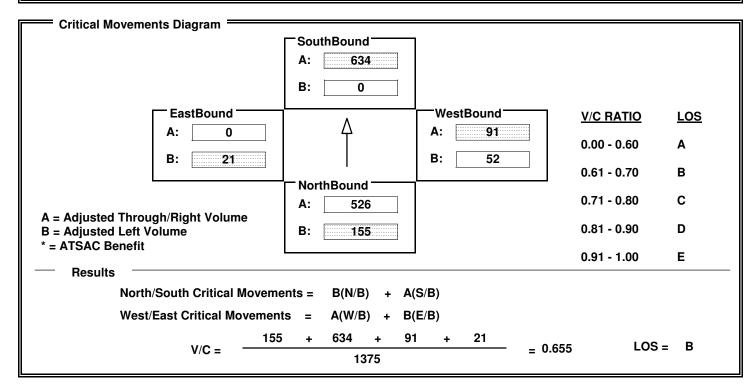
N/S:	Reseda BI	W/E:	Victory BI	I/S No:	20
AM/PM: AM	Comment	s: Cumulative Base)		
COUNT DATI	E:	STUDY DATE:	GROV	VTH FACTOR:	

Volume	e/Lane/Sig	ınal Conf	iguration	ıs ====											
	NO	NORTHBOUND			SOUTHBOUND			WE	STBOU	ND	E	EASTBOUND			
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT		
EXISTING	76	788	125	109	1068	176		98	1492	114	110	1822	73		
AMBIENT															
RELATED															
PROJECT															
TOTAL	76	788	125	109	1068	176		98	1492	114	110	1822	73		
LANE	f 分 4	↑ ♠ ¢	 	竹 分	个 命 句 1 1				↑ ♠ ↑ 2	<u>}</u>	∮ ∱	2	↑ ↑ ↑ 1		
	Phasin	ıg l	RTOR	Phasii	ng I	RTOR		Phasir	ng I	RTOR	Phasi	ng	RTOR		
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto		Prot-F	ix	Auto	Prot-F	ix	Auto		
		·													

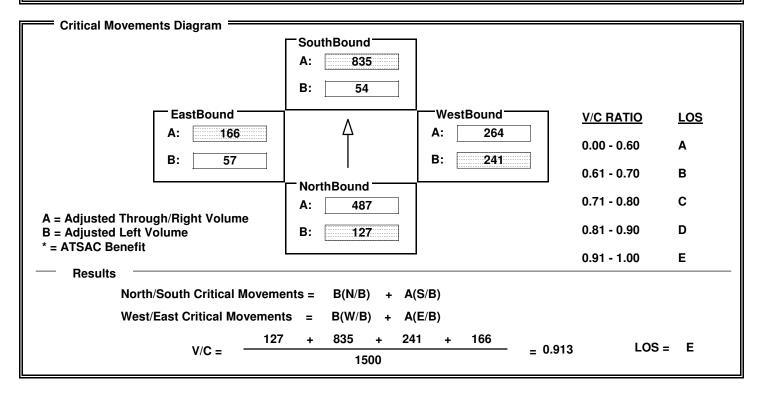

N/S:	De Soto Ave	W/E:	El Rancho Dr	I/S No:	21
AM/PM: AM	Comments:	Cumulative	Base		
COUNT DATE:	S1	UDY DATE:	GROWT	H FACTOR:	

Volume	/Lane/Si	gnal Conf	iguration	ıs ====								
	NO	RTHBOU	ND	SC	SOUTHBOUND			ESTBOU	ND	EASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	2	1762	108	31	2458	0	9	0	27	2	0	2
AMBIENT												
RELATED												
PROJECT												
TOTAL	2	1762	108	31	2458	0	9	0	27	2	0	2
LANE	h 分 1	↑ ♠ ♠ 2 1		h 分	↑ ♠ ↑ 2 1		f 分	个 	\$	f 分	↑ ♠ ↑ -	1
	Phasi	ng F	RTOR	Phasi	ng l	RTOR	Phasi	ng	RTOR	Phasir	ng	RTOR
SIGNAL	Pern	n	Auto	Perr	n	Auto	Pern	n	Auto	Perm	1	<none></none>
il .												

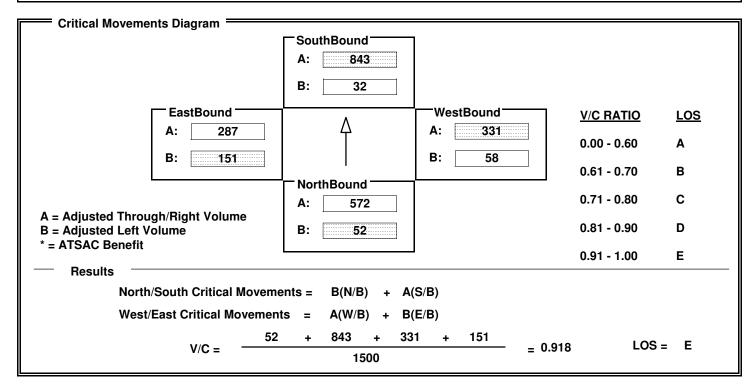
Critical Movements Diagram				
	SouthBound A: 819 B: 31			
EastBound	Λ	WestBound	V/C RATIO	<u>LOS</u>
A: 2 B: 2		A: 27 B: 9	0.00 - 0.60	A
J	<u> </u>	<u> </u>	0.61 - 0.70	В
A A II a da Tiran da Birda Valancia	NorthBound A: 623		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 2		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Movement	ents = $B(N/B)$ + $A($	(S/B)		
West/East Critical Movemen	its = $A(W/B)$ + $B($	(E/B)		
V/C =2	+ 819 + 27	7 + 2 = 0.567	LOS =	Α
V/C =	1500	= 0.307		


N/S:	De Soto Ave	W/E:	Erwin St	I/S No:	22
AM/PM: A	M Comment	s: Cumulative Bas	se		
COUNT DAT	ГЕ:	STUDY DATE:	GRO	WTH FACTOR:	

Volume	/Lane/Sig	nal Confi	guration	ns ====								
	NOF	RTHBOUN	ın 🕨	SO	SOUTHBOUND			/ESTBOU	ND -	FΔ	STBOU	ND -
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	172	1376	7	30	2223	173	31	23	46	54	4	178
AMBIENT												
RELATED												
PROJECT									1			
TOTAL	172	1376	7	30	2223	173	31	23	46	54	4	178
LANE		↑ ♠ ♠ 2 1	lþ d⊥þ	, <u> </u>	个		ἡ ∰ 1 ∥	个 ☆ ′	₽ ₽ ₽ 1	f 分 f	↑ ☆ ́	1 □
	Phasin	g R	TOR	Phasii	ng I	RTOR	Phas	ing	RTOR	Phasin	ıg	RTOR
SIGNAL	Perm		Auto	Pern	n	Auto	Spl	it	Auto	Split		Auto
										_		


N/S:	Winnetka Ave	W/E:	Brahma Dr/Calvert St	I/S No:	23
AM/PM: A	M Comments	s: Cumulative B	ase		
COUNT DA	TE:	STUDY DATE:	GROWT	H FACTOR:	

Volume		nal Confi											
	NO	RTHBOUN	D	SO	UTHBOU	ND	W	WESTBOUND			FASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	155	1051	0	4	1267	139	52	23	68	39	0	38	
AMBIENT													
RELATED													
PROJECT													
TOTAL	155	1051	0	4	1267	139	52	23	68	39	0	38	
LANE		↑ ♠ ♦		, v	^	1	f 分	个 _命 4	1	4 分 (2)	↑ ♠ ́	Ŷ ₩ 1	
	Phasin	g R	TOR	Phasir	ng I	RTOR	Phasir	ng	RTOR	Phasir	ng	RTOR	
SIGNAL	Prot-F	ix <n< td=""><td>one></td><td>Perm</td><td>1</td><td>OLA</td><td>Split</td><td></td><td>Auto</td><td>Split</td><td>t </td><td>Auto</td></n<>	one>	Perm	1	OLA	Split		Auto	Split	t	Auto	


N/S:	De Soto Ave	W/E:	Oxnard St	I/S No:	24
AM/PM: AM	Comments:	Cumulative	Base		
COUNT DATE:	S	TUDY DATE:	GR	OWTH FACTOR:	

Volume	e/Lane/Si	gnal Confi	guration	ns ====									
	NO	RTHBOU	ND	SO	SOUTHBOUND			WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	127	1429	31	54	2267	238	241	466	62	57	166	82	
AMBIENT													
RELATED													
PROJECT													
TOTAL	127	1429	31	54	2267	238	241	466	62	57	166	82	
LANE	1	↑ ♠ ♠ 2	<u>l</u> δ 4 <u>τ</u> δ	N N	↑ ♠ ↑ 2 1		∮ ∰	个	<u>ү</u> ү ф	1	↑ ♠ ↑ 1	1 I	
	Phasii	ng F	TOR	Phasi	ng I	RTOR	Phasi	ng l	RTOR	Phasir	ng	RTOR	
SIGNAL	Pern	n /	Auto	Pern	n .	Auto	Pern	n	Auto	Perm	1	Auto	

N/S:	Winne	tka Ave	W/E:	Oxna	ard St	I/S No:	25
AM/P	M: AM	Comments:	Cumulative I	Base			
cou	NT DATE:	S	STUDY DATE:		GROWTH	FACTOR:	

Volume	e/Lane/Si	gnal Confi	guration	ıs ——								
	NO	RTHBOU	ND	SO	UTHBOU	ND	W	ESTBOU	ND	E/	STBOU	VD
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	52	1096	48	32	1456	230	58	260	13	151	287	69
AMBIENT												
RELATED												
PROJECT												
TOTAL	52	1096	48	32	1456	230	58	260	13	151	287	69
LANE	1	↑ ♠ ♠ 1	↑ 4 _†	f 分	个	\$ \psi \psi \psi \psi \psi \psi \psi \psi	ф П	↑ ♠ ↑ 1	<u>}</u> ₼ ₼	f 分	个 余 行 1	1 I
	Phasii	ng F	TOR	Phasi	ng l	RTOR	Phasi	ng	RTOR	Phasir	ng	RTOR
SIGNAL	Pern	n /	Auto	Pern	n	Auto	Perr	n	Auto	Perm	1	Auto

N/S:		De Soto Av	/e	W/E:	Burl	oank Bl	I/S No:	26
AM/PI	M: AM		Comments: (Cumulative	Base			
COU	NT DATE:		ST	UDY DATE:		GROW	VTH FACTOR:	

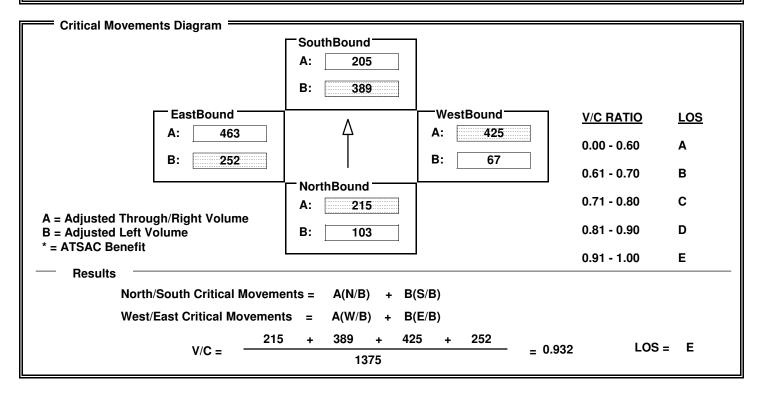
── Volume	/I ane/Si	gnal Conf	iguration	. = ==									
Volume	J Lanc/Oi	giiai ooiii	gurution										
	NO	RTHBOU	VD.	SO	UTHBOU	ND		WESTBOUND			EA	STBOU	ND
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	242	1617	0	0	1605	690		0	0	0	164	0	129
AMBIENT													
RELATED													
PROJECT													
TOTAL	242	1617	0	0	1605	690		0	0	0	164	0	129
	LTL	1017	U	U	1003	030		•		U	104		123
LANE	有 好	수 _命 숙 3 □ □	lγ (4π¢	, T	个		ф	护	个 	ή μ φ 	4 & 4 2	全最 4	2
	Phasir	ng F	RTOR	Phasir	ng l	RTOR	ı	Phasii	ng	RTOR	Phasin	g	RTOR
SIGNAL	Perm	n <r< td=""><td>none></td><td>Pern</td><td>n</td><td>Auto</td><td></td><td></td><td></td><td></td><td>Split</td><td></td><td>Auto</td></r<>	none>	Pern	n	Auto					Split		Auto

Critical Movements Diagram				
	A: 765 B: 0			
EastBound	Λ	WestBound	V/C RATIO	<u>LOS</u>
A: 71 B: 90		A: 0 B: 0	0.00 - 0.60	Α
5. 30			0.61 - 0.70	В
A AP A TIME A POLICY I	NorthBound A: 539		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 242		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
North/South Critical Moveme	ents = $B(N/B) + A($	S/B)		
West/East Critical Movemen	ts = $A(W/B)$ + $B($	E/B)		
V/C = 242	+ 765 + 0	+ 90 = 0.731	LOS =	С
V/C =	1500	= 0.731		•

N/S:	De Soto Ave	W/E:	101 WB Ramps	I/S No:	27
AM/PM: AM	Comments	S: Cumulative Bas	е		
COUNT DAT	E:	STUDY DATE:	GROWT	H FACTOR:	

	NO	RTHBOUN	םו -	SOUTHBOUND			WESTBOUND			EASTBOUND		
EXISTING	LT 192	тн 1469	RT 0	LT 0	тн 1213	RT 598	LT 157	тн 5	RT 647	LT 0	тн 0	RT 0
AMBIENT												
RELATED PROJECT												
TOTAL	192	1469	0	0	1213	598	157	5	647	0	0	0
LANE	ή _ψ Γ	↑ ♠ ♠ 2	Γ δ 4 Τδ	4 \$	수 余 숙 4	1 1	1 1	1	β β Φβ 1 1	\$ \$\frac{1}{4}\$	↑ ♠ ́	<u>β</u> β 4ηδ
SIGNAL	Phasii Prot-F		TOR	Phasi Perr		RTOR Auto	Phasin Split		RTOR Auto	Phasi	ng	RTOR

Critical Movements Diagram				
	SouthBound A: 598 B: 0			
EastBound —	1 ^	WestBound	V/C RATIO	LOS
A: 0 B: 0		A: 326 B: 157	0.00 - 0.60	A
B	'	B. 137	0.61 - 0.70	В
A Adimand Thursday (Birda Valuma	NorthBound A: 735		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 192		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = $B(N/B) + A($	S/B)		
West/East Critical Movemen	ts = A(W/B) + A(E/B)		
V/C = 192	2 + 598 + 32 1425	6 + 0 = 0.783	LOS =	С


N/S:	De Soto Ave	W/E:	101 EB Ramps	I/S No:	28
AM/PM: AM	Comments	: Cumulative Bas	е		
COUNT DAT	E:	STUDY DATE:	GROWT	H FACTOR:	

	NO	RTHBOU	ND	SOUTHBOUND			WESTBOUND			FASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	0	848	129	1006	419	0	0	0	0	728	5	439
AMBIENT												
RELATED												
PROJECT												
TOTAL	0	848	129	1006	419	0	0	0	0	728	5	439
LANE	ф	↑ ♠ ↑ 3	1		↑ ∰ ↑ 2		ф ф·	个 命 4	<u>₽</u> № ₩	fy 分 2 1 1		<u>}</u>
	Phasir	ng I	RTOR	Phasin	ıg	RTOR	Phasir	ng	RTOR	Phasin	g	RTOR
SIGNAL	Perm	1 <	none>	Prot-F	ix <	none>				Split		Auto

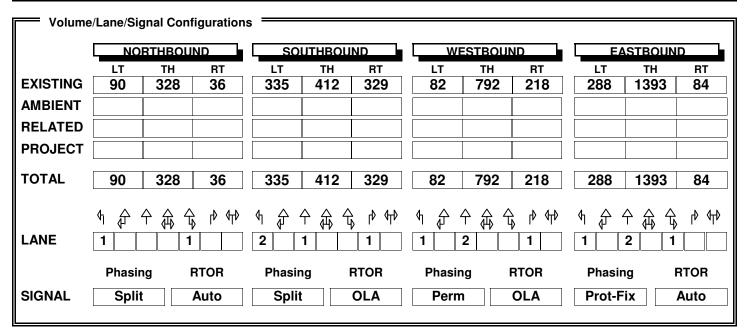
Critical Movements Diagram				
J	SouthBound A: 210 B: 553			
EastBound	<u> </u> 	WestBound	V/C RATIO	LOS
A: 439 B: 367		A: 0 B: 0	0.00 - 0.60	A
B. 307		J	0.61 - 0.70	В
A Adjusted Through/Dight Volume	NorthBound A: 283		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 0		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = $A(N/B) + B($	S/B)		
West/East Critical Movemen	ts = A(W/B) + A(W/B)	E/B)		
V/C = 283	3 + 553 + 0 1425	+ 439 = 0.895	LOS =	D

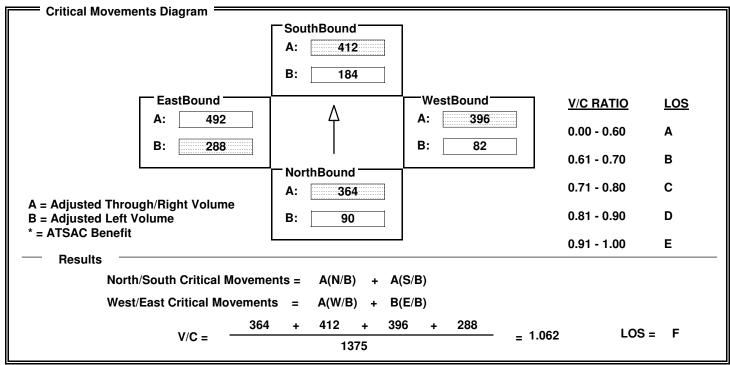
N/S:	De Soto Ave	W/E:	Ventura BI	I/S No:	29
AM/PM: A	M Comment	s: Cumulative Bas	se		
COUNT DAT	ΓE:	STUDY DATE:	GROV	VTH FACTOR:	

Volume	/I ane/Si	gnal Conf	iguration	. ===								
Volume	J' Larie Oi	giiai ooiii	iguration									
	NO	RTHBOU	ND	SO	UTHBOU	ND		WESTBOUND			ASTBOUN	1D
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	103	283	146	708	205	415	67	1276	450	252	1323	67
AMBIENT												
RELATED												
PROJECT												
TOTAL	103	283	146	708	205	415	67	1276	450	252	1323	67
IOIAL	103	203	140	700	205	415	07	12/0	450	232	1323	07
LANE	∮ ∱	个 命 句 1 1	;	ф ф 2	↑ ♠ ↑ 1	\$	ሳ <i>ፈ</i>	3	↑ Þ ₩ 1	f 分	↑ ∰ ↑ 2 1	
	Phasir	ng I	RTOR	Phasir	ng l	RTOR	Pha	sing	RTOR	Phasir	ng	RTOR
SIGNAL	Split	t .	Auto	Split	t	OLA	Pe	erm	OLA	Prot-F	ix	Auto
					·						·	

N/S:		Winnetka A	ve	W/E:	101 V	/B Ramps	I/S No:	30
AM/PI	M: AM		Comments: (Cumulative	Base			
COU	NT DATE:		ST	UDY DATE:		GROW	TH FACTOR:	

Volume	e/Lane/Sig	anal Conf	iguration	. = ===								
Volume	5/ Lane/Sig	gilai Colli	iguratioi	13								
	NO	RTHBOU	ND	SO	UTHBOU	ND	W	ESTBOL	JND	E	STBOU	ND
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	152	865	0	0	1065	466	360	2	505	0	0	0
AMBIENT												
RELATED												
PROJECT												
		1			1	1					T	
TOTAL	152	865	0	0	1065	466	360	2	505	0	0	0
LANE		个	;	ф П	↑ ♠ ↑ 2	\$\ \psi \ \f\ \\ \f\ \\ \\ \\ \\ \\ \\ \\ \\ \\	փ գ 1	↑ ∰ 1	∯ Þ ₩ 1	4 £	个 余	↑ \p \p\
	Phasir	ng F	RTOR	Phasi	ng l	RTOR	Phasi	ng	RTOR	Phasir	ng	RTOR
SIGNAL	Prot-F	ix <	none>	Pern	n	Auto	Spli	it	Auto			

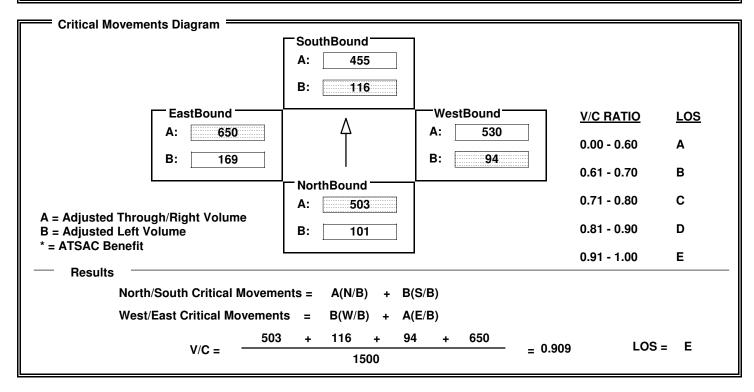

Critical Movements Diagram				
	SouthBound A: 533 B: 0			
EastBound —	Λ	WestBound	V/C RATIO	LOS
A: 0 B: 0		A: 289 B: 289	0.00 - 0.60	A
] '	2. 255	0.61 - 0.70	В
	NorthBound		0.71 - 0.80	С
A = Adjusted Through/Right Volume	A: 433		0.71 - 0.00	C
B = Adjusted Left Volume	B: 152		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results			0.01 1.00	
North/South Critical Moveme	ents = $B(N/B) + A($	S/B)		
West/East Critical Movemen	ts = A(W/B) + A(E/B)		
152	` ,	•		
V/C = -132		= 0.684	LOS =	В
	1425			


N/S:	Winnetka Ave	W/E:	101 EB Ramps	I/S No:	31					
AM/PM: AM	Comments: Cumulative Base									
COUNT DATE:		STUDY DATE:	GR	OWTH FACTOR:						

Volume	e/Lane/Sig	ınal Conf	iguration	s ====								
	NOI	RTHBOU	ND	SO	UTHBOL	IND	W	ESTBOU	ND	EA	STBOU	ND
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	0	621	211	474	950	0	0	0	0	396	0	230
AMBIENT												
RELATED												
PROJECT												
TOTAL	0	621	211	474	950	0	0	0	0	396	0	230
LANE	4 £ 4	↑ 命 仓 1 1		, v	수 슈 ⁴ 2	<u> </u>	ф [个 		ή ή Δ 1	^ <u></u>	<u>}</u>
	Phasin	ıg F	RTOR	Phasir	ng	RTOR	Phasi	ng	RTOR	Phasin	g	RTOR
SIGNAL	Perm	l <	none>	Prot-F	ix <	:none>				Split		Auto

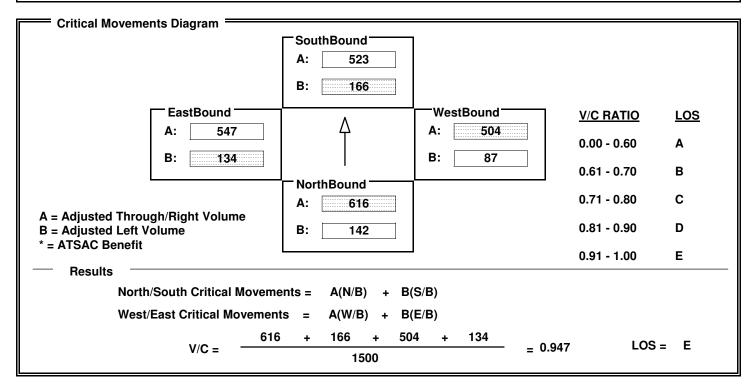
Critical Movements Diagram				
	SouthBound A: 475 B: 474			
EastBound	Λ	WestBound	V/C RATIO	<u>LOS</u>
A: 230 B: 396		A: 0 B: 0	0.00 - 0.60	A
5	L., ., <u>,</u> '	J	0.61 - 0.70	В
A Adiiyated Thyeyesh /Dight Velyese	NorthBound A: 311		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 0		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				_
North/South Critical Moveme	ents = $A(N/B) + B($	S/B)		
West/East Critical Movemen	ts = $A(W/B)$ + $B($	E/B)		
311	+ 474 + 0	+ 396 = 0.829	LOS =	D
V/C =	1425	= 0.028		

N/S:	Winne	ka Ave	W/E:	Ventura BI	I,	/S No:	32		
AM/PM: AM Comments: Cumulative Base									
cou	OUNT DATE: STUDY DATE: GROWTH FACTOR:								

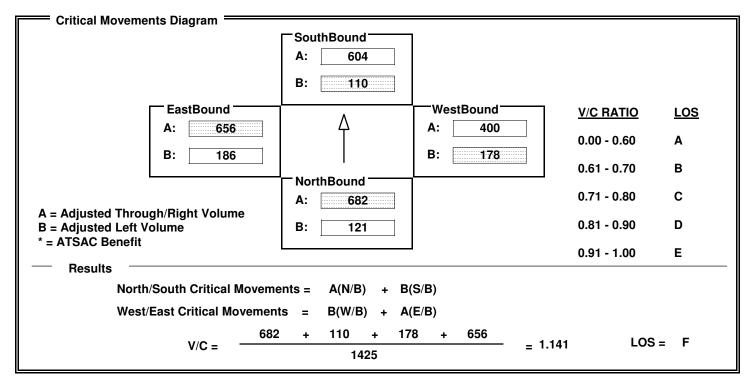

N/S:		De Soto Av	/e	W/E:	Sat	icoy St	I/S No:	1			
AM/PI	M: PM	PM Comments: Cumulative Base									
cour	NT DATE:		ST	UDY DATE:		GRO	WTH FACTOR:				

Volume	/I ana/Si	gnal Conf	iguration										
Volume	Larieroi	giiai Ooiii	iguration	3									
	NO	RTHBOU	ND	SO	UTHBOU	ND		W	ESTBOU	ND	E	ASTBOUN	VD.
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	101	1333	140	127	1099	146		101	886	105	140	1169	78
AMBIENT													
RELATED													
PROJECT													
TOTAL	101	1000	4.40	40=	1000	140		404		100	440	1100	
TOTAL	101	1333	140	127	1099	146		101	886	105	140	1169	78
LANE	∮ ∰	☆ ☆ ☆ ☆ 2 1	; I⊅ (HÞ	句 分	个 余 仓 1 1	<u></u>	փ 1	护	个		竹 矿	个 余 仓 1 1	
	Phasir	ng F	RTOR	Phasi	ng l	RTOR	ı	Phasi	ng	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto		Pern	n	Auto	Prot-l	Fix	Auto

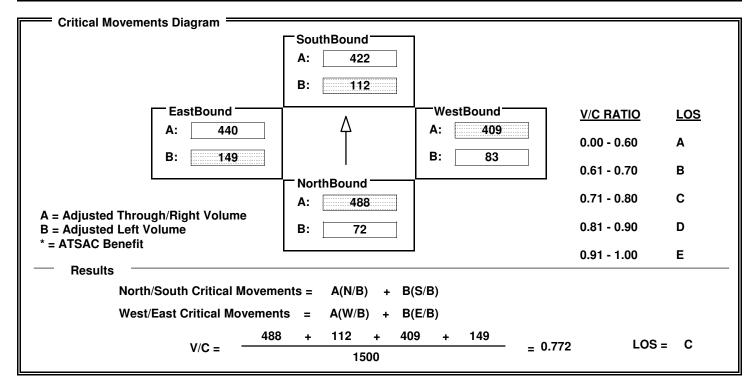
Critical Movements Diagram				
	SouthBound A: 623 B: 127			
EastBound —	1 ^	WestBound	V/C RATIO	LOS
A: 624 B: 140		A: 496 B: 101	0.00 - 0.60	A
	L., ., <u>,</u> '		0.61 - 0.70	В
A Adimated Threewalt/Digital Volume	NorthBound A: 491		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 101		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = $B(N/B) + A($	S/B)		
West/East Critical Movemen	ts = B(W/B) + A(E/B)		
101	+ 623 + 10	1 + 624 = 1.054	LOS =	F
V/C =	1375	= 1.054		Ĭ


N/S:	Mason Ave	W/E:	Saticoy St	I/S No:	2				
AM/PM: PM Comments: Cumulative Base									
COUNT DAT	E:	STUDY DATE:	GROW	/TH FACTOR:					

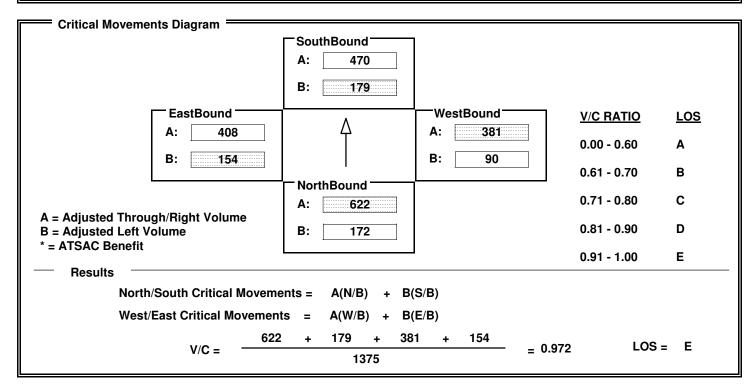
Volume	/Lane/Sig	nal Confi	guration	s									
	NOF	RTHBOUN	D	SO	UTHBOU	ND		WES	STBOU	ND	EASTBOUND		
	LT	TH	RT	LT	TH	RT	Ī	Т.	TH	RT	LT	TH	RT
EXISTING	101	923	83	116	782	128	9	4	978	81	169	1191	109
AMBIENT													
RELATED													
PROJECT													
TOTAL	101	923	83	116	782	128	9	4	978	81	169	1191	109
LANE	1 1		<u>ι</u> δ 4πδ	竹 矿	个 余 行 1 1	ф ф ф	փ 1		全 分	<u>}</u>	f 分	↑ ♠ ↑ 1 -	1
	Phasin	g R	TOR	Phasii	ng	RTOR	Pł	nasing	g I	RTOR	Phasir	ng	RTOR
SIGNAL	Perm	A	uto	Pern	n	Auto	F	Perm		Auto	Pern	1	Auto


N/S:	Winne	tka Ave	W/E:	Satio	coy St	I/S No:	3			
AM/PM: PM Comments: Cumulative Base										
cou	UNT DATE: GROWTH FACTOR:									

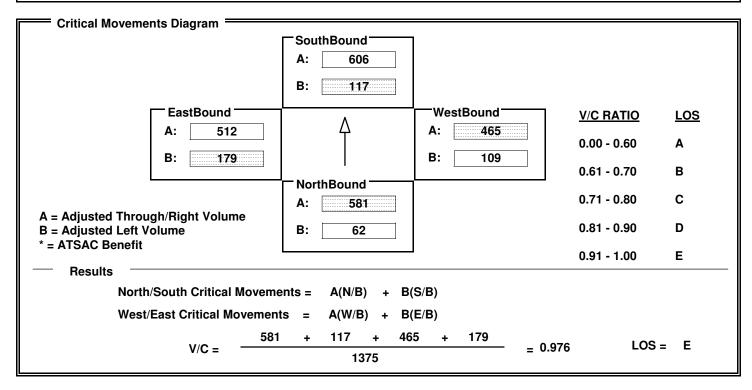
Volume	/Lane/Sig	gnal Conf	iguration	ıs ====								
	NO	RTHBOU	VD	SO	UTHBOU	ND	W	ESTBOU	ND	EA	STBOUN	ID
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	142	1111	120	166	1046	163	87	850	157	134	968	126
AMBIENT												
RELATED												
PROJECT												
TOTAL	142	1111	120	166	1046	163	87	850	157	134	968	126
LANE	4 A	↑ ♠ ♠ 1 1	_ t> 4t>	, N	수 🚓 🕆 2	1 I	∮ ∰	个		竹 分 '	↑ ♠ ↑ 1 1	\$ IV (IV)
	Phasir	ng F	RTOR	Phasii	ng I	RTOR	Phasi	ng	RTOR	Phasir	ıg	RTOR
SIGNAL	Perm	1	Auto	Pern	n	Auto	Perr	n	Auto	Perm	1	Auto


N/S:	De	Soto Ave	W/E:	Sherman Way	I/S No:	4
AM/P	M: PM	Comments:	Cumulative B	ase		
COU	NT DATE:	S1	TUDY DATE:	GRO	OWTH FACTOR:	

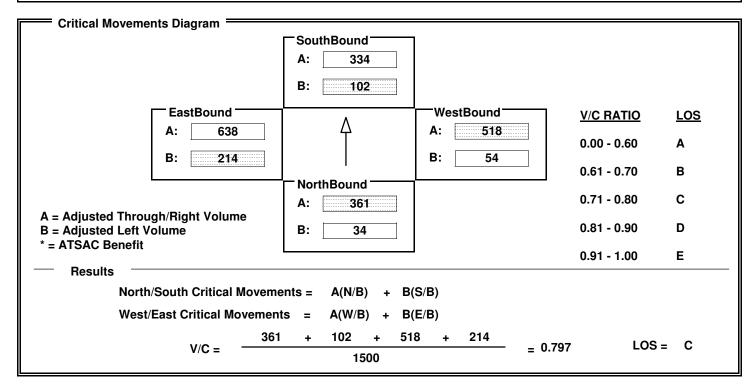
Volume	e/Lane/Sid	gnal Conf	iguration	ıs ——									
	-, <u>-</u> ,	g											
	NO	RTHBOU	ND	SO	UTHBOU	ND	1	W	ESTBOU	VD	E	ASTBOUN	ID
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	121	1749	297	110	1046	162		178	1062	139	186	1815	153
AMBIENT													
RELATED													
PROJECT													
TOTAL	404	1740	007	440	1010	100	1	170	1000	100	100	4045	150
IOIAL	121	1749	297	110	1046	162]	178	1062	139	186	1815	153
LANE	♠ ♣	↑ ♠ ♠ 2 1	<u>}</u>	h 分	个 命 句 1 1			<u>\</u>	↑ ♠ ↑ 2 1	<u></u>	f 分 1	个	<u>}</u>
	Phasii	ng F	RTOR	Phasi	ng l	RTOR		Phasir	ng I	RTOR	Phasi	ng	RTOR
SIGNAL	Pern	n ,	Auto	Pern	n .	Auto		Prot-F	ix	Auto	Prot-F	Fix	Auto
									-				


N/S:	Mason A	Ave W/E:	She	rman Way	I/S No:	5
AM/PI	M: PM	Comments: Cumulativ	e Base			
COU	NT DATE:	STUDY DATE	≣:	GROWTH	FACTOR:	

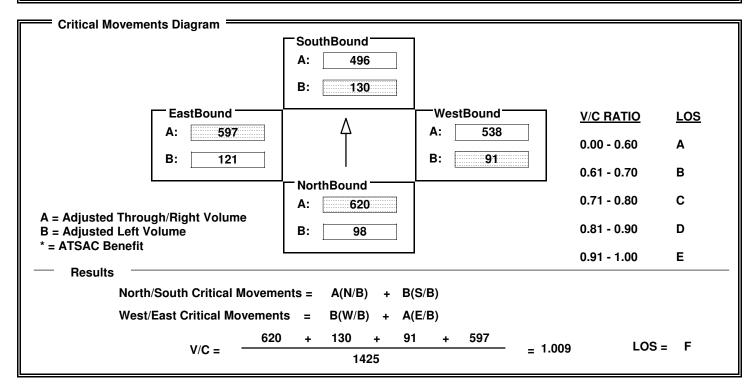
Volume		gnal Conf										
	NO.	RTHBOU	ND	SO	SOUTHBOUND			ESTBOU	ND	E/	ASTBOUN	D
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	72	911	64	112	700	143	83	1139	89	149	1265	54
AMBIENT												
RELATED												
PROJECT												
TOTAL	72	911	64	112	700	143	83	1139	89	149	1265	54
LANE	f 分	个		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	个	<u>}</u>	句 分 1	2 1	² Γ 4 _Γ	f	↑ ∰ †	
	Phasir	ng F	RTOR	Phasir	ng	RTOR	Phasi	ng l	RTOR	Phasii	ng	RTOR
SIGNAL	Perm	1	Auto	Perm	1	Auto	Perr	n	Auto	Pern	n	Auto


N/S:	Winnetka Ave	W/E:	Sherman Way	I/S No:	6
AM/PM: PM	Comments	s: Cumulative Bas	е		
COUNT DAT	E:	STUDY DATE:	GROWI	TH FACTOR:	

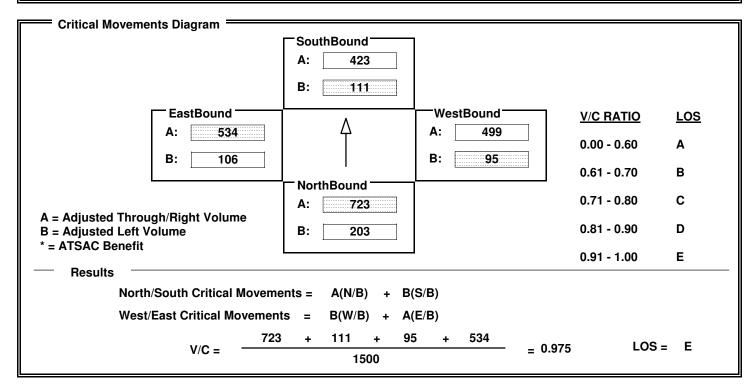
Volume	/Lane/Sig	nal Confi	guration	s ====								
	NO	RTHBOUN	ID	SO	UTHBOL	IND	W	STBOU	ND	E/	STBOUN	ID
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	172	1148	95	179	939	156	90	986	156	154	1114	111
AMBIENT												
RELATED												
PROJECT												
TOTAL	172	1148	95	179	939	156	90	986	156	154	1114	111
LANE	f 分 4	↑ ♠ ♦ 1 1			个	<u>}</u>	<u>\</u>	↑ ♠ ↑ 2 1		f 分	2 1	;
SIGNAL	Phasin Prot-F		TOR	Phasii Prot-F		RTOR Auto	Phasir Prot-F		RTOR Auto	Phasir Prot-F		RTOR Auto


N/S:	De Soto Ave	W/E:	Vanowen St	I/S No:	7
AM/PM: PM	Comments:	Cumulative	Base		
COUNT DATE:	S	TUDY DATE:		ROWTH FACTOR:	

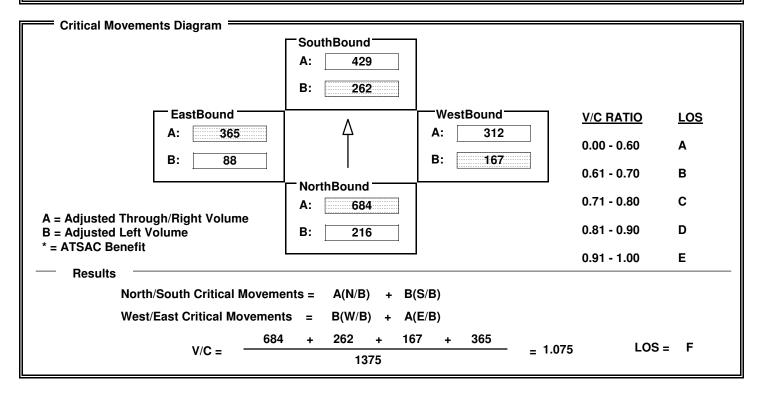
Volume	/Lane/Si	gnal Conf	iguration	ıs ====								
	NO	RTHBOU	ND	SO	SOUTHBOUND			ESTBOU	ND	E/	ASTBOUN	D
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	62	1618	124	117	992	220	109	929	143	179	1432	104
AMBIENT												
RELATED												
PROJECT												
TOTAL	62	1618	124	117	992	220	109	929	143	179	1432	104
LANE	4 A	↑ ♠ ऐ 2 1		N N	个	<u>}</u>	f 分 1	↑ ∰ 1 2	1	f 分	☆ ☆ ☆ 2	, r 4p
	Phasir	ng F	RTOR	Phasir	ng	RTOR	Phasi	ng	RTOR	Phasir	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto	Prot-F	Fix	Auto	Prot-F	ix	Auto


N/S:	Mason A	ve W/E:	Vano	wen St	I/S No:	8
AM/P	M: PM	Comments: Cumulativ	e Base			
COU	NT DATE:	STUDY DATE	::	GROWTH FA	ACTOR:	

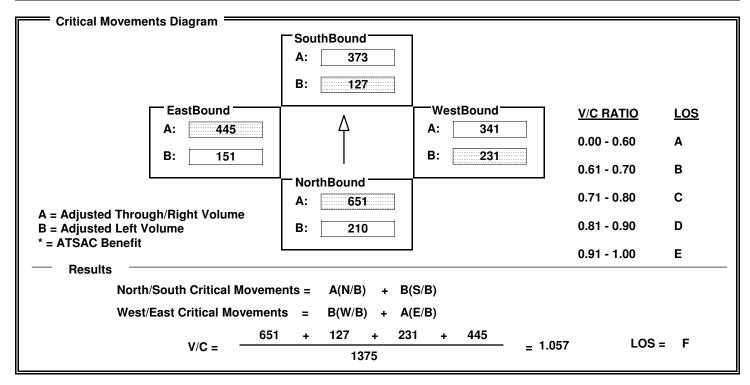
Volume	e/Lane/Sig	nal Confi	guration	ıs ====								
	NO	RTHBOUN	ND	SO	SOUTHBOUND			ESTBOU	ND	E/	ASTBOUN	D
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	34	678	44	102	529	138	54	944	91	214	1212	63
AMBIENT												
RELATED												
PROJECT												
TOTAL	34	678	44	102	529	138	54	944	91	214	1212	63
LANE	f 分 f	个		竹 矿	个 命 行 1 1		f 分 1	个		f 分	个	, r (h)
	Phasin	ng F	TOR	Phasii	ng	RTOR	Phasi	ng	RTOR	Phasir	ng	RTOR
SIGNAL	Perm	1 /	Auto	Pern	1	Auto	Perr	n	Auto	Perm	1	Auto


N/S:	Winnetka Ave	W/E:	Vanowen St	I/S No:	9
AM/PM: PN	Comments	: Cumulative Base	е		
COUNT DAT	E:	STUDY DATE:	GROW	TH FACTOR:	

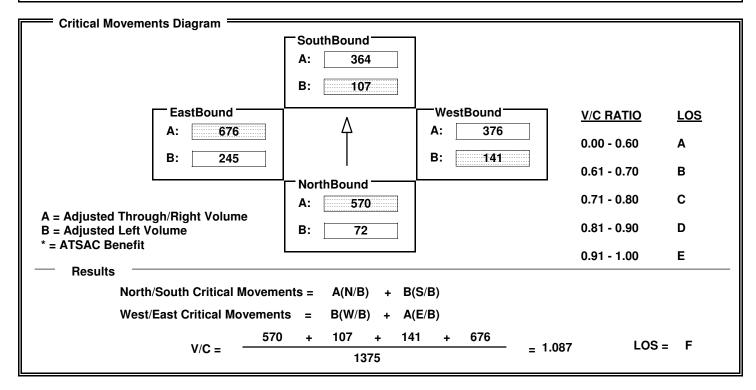
Volume	e/Lane/Si	gnal Conf	iguratior	ıs									
	NO	RTHBOU	ND	SO	UTHBOL	IND	W	ESTBOU	ND	E/	ASTBOUN	STBOUND	
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	98	1139	101	130	897	94	91	955	120	121	1110	84	
AMBIENT													
RELATED													
PROJECT													
TOTAL	98	1139	101	130	897	94	91	955	120	121	1110	84	
LANE	t	↑ ♠ ↑ 1 1	; rÞ 4⊤Þ	竹 分	个		Φ ∰ 1	↑ ♣ ↑ 1 1		f 分	个 余 分 1 1	, t ₂ dt ₂	
	Phasii	ng F	RTOR	Phasii	ng	RTOR	Phasi	ng	RTOR	Phasii	ng	RTOR	
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto	Peri	n	Auto	Pern	n	Auto	


N/S:	Shoup Ave	W/E:	Victory BI	I/S No:	10
AM/PM: PM	Comments	: Cumulative Bas	se		
COUNT DATE	:	STUDY DATE:	GROV	/TH FACTOR:	

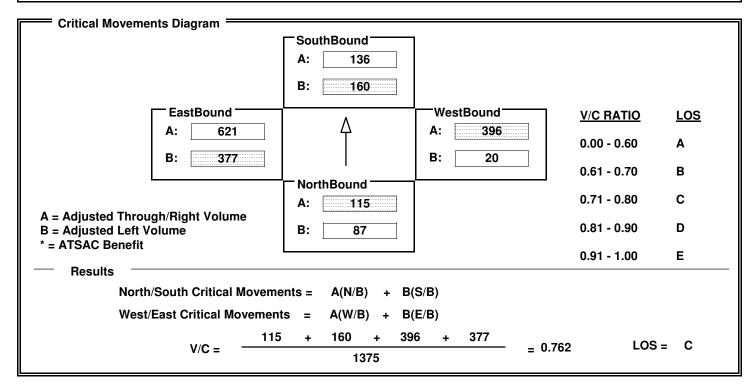
Volume	e/Lane/Si	gnal Conf	iguratior	ıs ====									
	NO	RTHBOU	ND	SO	UTHBOU	ND		WE	STBOU	ND	E	ASTBOU	ND
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	203	1445	117	111	749	96		95	998	165	106	932	136
AMBIENT													
RELATED													
PROJECT													
TOTAL	203	1445	117	111	749	96	!	95	998	165	106	932	136
LANE	∮ ∰ 1 1	수 슈 수 2	; r	竹 分	个 余 仓 1 1	<u>ф</u> фф	փ 1	N .	Ŷ ♠ ́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́	Å ∱ ∰ 1	f 分	个	1
	Phasii	ng F	RTOR	Phasii	ng	RTOR	F	hasin	ıg	RTOR	Phasii	ng	RTOR
SIGNAL	Pern	n .	Auto	Pern	n	Auto		Perm	1	Auto	Pern	n	Auto


N/S: Topanga Car	nyon Bl W/E:	Victory BI	I/S No: 11
AM/PM: PM	Comments: Cumulative Ba	se	
COUNT DATE:	STUDY DATE:	GROW	TH FACTOR:

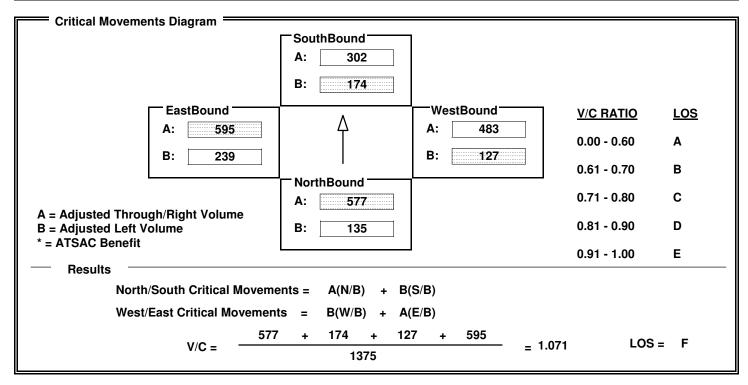
Volume	/I ano/Si	gnal Conf	iguration	. = ==								
Volume	/ Lane/Si	giiai Coili	iguration	13								
	NO	RTHBOU	ND	SO	UTHBOU	ND	W	ESTBOU	ND	EA	STBOUN	ID
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	216	1677	376	262	1161	127	304	936	252	160	913	183
AMBIENT												
RELATED												
PROJECT												
TOTAL	010	1077	076	000	4464	107	004	000	050	100	010	100
IOIAL	216	1677	376	262	1161	127	304	936	252	160	913	183
LANE	∮ ₽	☆ ☆ ☆ ☆ 2 1	; rÞ 4πÞ	竹 分	수 _命 숙 2 1	<u>}</u>	Φ ф 2	3	}	N N	个	
	Phasir	ng F	RTOR	Phasii	ng l	RTOR	Phasi	ng	RTOR	Phasir	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto	Prot-l	Fix	OLA	Prot-F	ix	Auto


N/S:		Canoga Av	е	W/E:	Vic	ctory BI	I/S No:	12
AM/PI	M: PM		Comments:	Cumulative	Base			
cou	NT DATE:		ST	UDY DATE:		GR	OWTH FACTOR:	

- Volume	/Lana/Sia	gnal Conf	iauration	. = =									
Volume	e/Lane/Si	gilai Colli	iguratioi	15									
	NO	RTHBOU	ND	SO	UTHBOU	IND	Ę	W	ESTBOU	ND	E	ASTBOU	ND
	LT	TH	RT	LT	TH	RT	•	LT	TH	RT	LT	TH	RT
EXISTING	210	1569	384	127	966	152		231	1157	208	151	1336	230
AMBIENT													
RELATED													
PROJECT													
TOTAL	210	1569	384	127	966	152		231	1157	208	151	1336	230
									1			<u>'</u>	
	4 ₽	$\uparrow \Leftrightarrow \uparrow$, lγ 4±γ	ካ ∱	↑ 🚓 1	4 4	4	ካ 👉	个 兪 イ	4 4	4 ₽	个 余 4	\$ 40 440 <i>\$</i>
LANE	1	2 1		1	2 1			1	3 1		1	3	1
	Phasir	ng F	RTOR	Phasii	ng	RTOR		Phasii	ng	RTOR	Phas	ing	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto		Prot-F	ix	OLA	Prot-	Fix	OLA


N/S:	De	Soto Ave	W/E:	Victory BI	I/S No:	13
AM/P	M: PM	Comments: C	Cumulative E	Base		
coul	NT DATE:	ST	UDY DATE:		GROWTH FACTOR:	

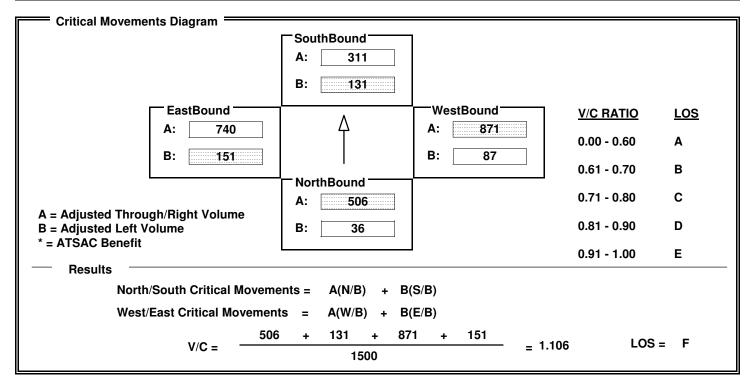
Volume	/Lane/Si	gnal Conf	iguration	ıs ====								
	NO	RTHBOU	ND	SO	UTHBOU	ND	W	/ESTBOUI	ND	E	ASTBOUN	D
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	72	1252	457	107	896	197	256	1128	117	446	1896	133
AMBIENT												
RELATED												
PROJECT												
TOTAL	72	1252	457	107	896	197	256	1128	117	446	1896	133
LANE	4	↑ ♠ ♠ 2 1		, v	个	<u>ф</u> фф	Φ ∯ 2		\(\frac{1}{2}\) \(\frac{1}{2}\)	∮ ∰	↑ ♠ ↑ 2 1	
	Phasi	ng F	RTOR	Phasir	ng	RTOR	Phasi	ing l	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto	Prot-	Fix <	none>	Prot-F	ix	Auto


N/S:	Mason Ave	W/E:	Victory BI	I/S No:	14
AM/PM: PM	Comments: (Cumulative	Base		
COUNT DATE:	ST	UDY DATE:		GROWTH FACTOR:	

Volume	/Lane/Sig	ınal Confi	guration	ıs ====								
	NO	RTHBOUN	VD.	SO	UTHBOL	JND	v	VESTBOU	ND	E/	ASTBOUN	ID
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	87	159	70	160	136	242	20	1187	186	377	1862	118
AMBIENT												
RELATED												
PROJECT												
TOTAL	87	159	70	160	136	242	20	1187	186	377	1862	118
LANE	f 企	个	↑	竹 分	个	2	δη φ 1	↑ ∰ 1	<u>}</u>	f 分	今 _徐 徐 3	1 I
	Phasin	ig F	TOR	Phasii	ng	RTOR	Phas	ing	RTOR	Phasii	ng	RTOR
SIGNAL	Prot-F	ix /	Auto	Prot-F	ix <	none>	Prot-	Fix <	none>	Prot-F	ix	Auto

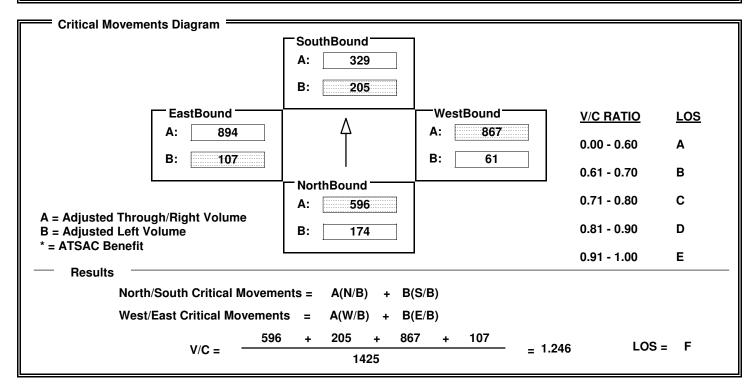
N/S:		Winnetka A	ve	W/E:	Vio	ctory BI	I/S No:	15
AM/PI	M: PM		Comments:	Cumulative	Base			
cou	NT DATE:		S	TUDY DATE:		GRO	OWTH FACTOR:	

- Volume	/I ana/Si	gnal Conf	iauration	·- —									
Volume	or Larier Oil	giiai Ooiii	iguratioi	13									
	NO	RTHBOU	ND	SO	UTHBOU	ND	ıI	W	ESTBOU	VD	E	ASTBOUN	ID
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	135	1019	134	174	780	125		127	1305	145	239	1612	174
AMBIENT													
RELATED													
PROJECT													
												<u> </u>	
TOTAL	135	1019	134	174	780	125		127	1305	145	239	1612	174
	∮ ₽	$\uparrow \Leftrightarrow \uparrow$	_ b db	ላ ₽		44 41 4		ካ 👉	수 🚓 ל	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ላ ₽	个 命 分	ς φ (φ)
LANE	1	1 1		1	2 1	<u>,</u>] [2 1		1	2 1	
	-	- -			_ -		l L	-	_ -				
	Phasir	ng F	RTOR	Phasii	ng	RTOR		Phasii	ng l	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto] [Prot-F	ix	Auto	Prot-l	Fix	Auto
							j L						

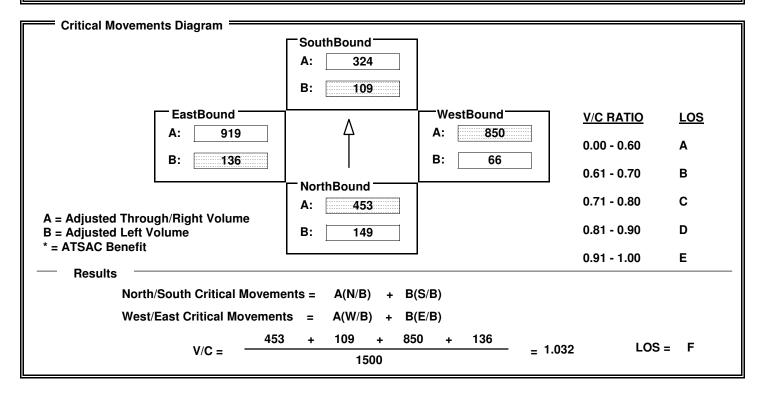

N/S:	Topham St	W/E:	Victory BI	I/S No:	16
AM/PM: PM	Comments	Cumulative Ba	ase		
COUNT DATE	i:	STUDY DATE:	GROW	TH FACTOR:	

Volume	e/Lane/Sig	nal Conf	auration	. = ===										
Volume	er Larier Sig	iiai ooiii	guration	13										
	NOF	RTHBOU	ND.	SOL	JTHBOU	IND		WESTBOUND			E	EASTBOUND		
	LT	TH	RT	LT	TH	RT	L	T	TH	RT	LT	TH	RT	
EXISTING	311	0	6	0	0	0	()	1420	0	0	1704	351	
AMBIENT														
RELATED														
PROJECT														
TOTAL	311	0	6	0	0	0)	1420	0	0	1704	351	
LANE	h 分 4		լ Ւ Վ ⊤ Ւ		Դ ∰ Դ O O O	' , , , , , , ,	ф	∱ ↑		}	4 &	个	<u>}</u>	
	Phasin	g F	TOR	Phasin	g	RTOR	Ph	nasing	j F	RTOR	Phasi	ng	RTOR	
SIGNAL	Prot-F	ix <r< td=""><td>none></td><td>Perm</td><td></td><td>Auto</td><td>F</td><td>Perm</td><td><i< td=""><td>none></td><td>Perr</td><td>n</td><td>OLA</td></i<></td></r<>	none>	Perm		Auto	F	Perm	<i< td=""><td>none></td><td>Perr</td><td>n</td><td>OLA</td></i<>	none>	Perr	n	OLA	

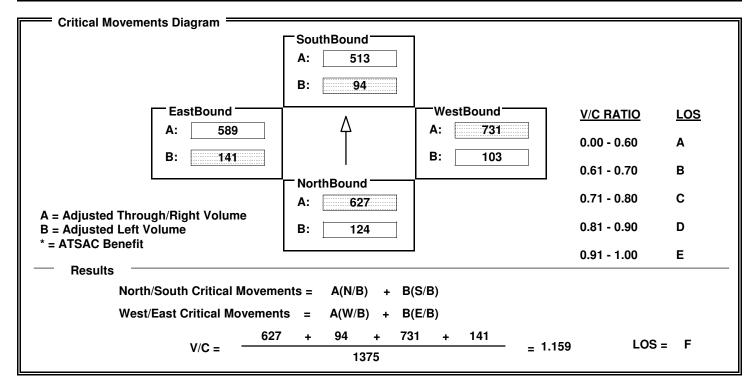
Critical Movements Diagram				
	SouthBound A: 0 B: 0			
EastBound —	Λ	WestBound	V/C RATIO	<u>LOS</u>
A: 852 B: 0		A: 710 B: 0	0.00 - 0.60	A
	<u> </u>		0.61 - 0.70	В
A Adiabad Thurson Dinha Valous	NorthBound A: 6		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 311		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Movement	ents = $B(N/B) + A($	S/B)		
West/East Critical Movemen	ts = B(W/B) + A(E/B)		
V/C 311	+ 0 + 0	+ 852 = 0.816	LOS =	D
V/C =	1425	= 0.010		


N/S:	Corbin A	ve W/E:	Victory	у ВІ	I/S No:	17				
AM/PM: PM Comments: Cumulative Base										
coul	NT DATE:	STUDY DATE	:	GROWTH FAC	CTOR:					

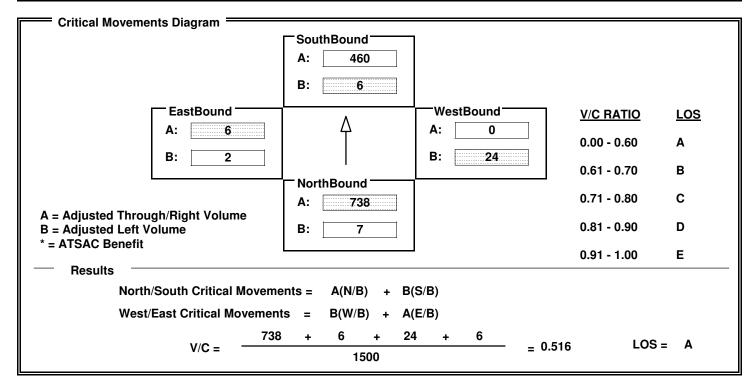
Volume	/I ano/Si	gnal Conf	iguration										
Volume	z/Lane/Siţ	gilai Colli	iguratioi	ıə									
	NO	RTHBOU	ND	SO	SOUTHBOUND			W	ESTBOU	ND	E	ASTBOUN	D
	LT	TH	RT	LT	TH	RT	_	LT	TH	RT	LT	TH	RT
EXISTING	36	867	144	131	464	157		87	1376	366	151	1449	31
AMBIENT													
RELATED													
PROJECT													
						· · · · · · · · · · · · · · · · · · ·	_		1				
TOTAL	36	867	144	131	464	157		87	1376	366	151	1449	31
	- Ч Д	个 	· P +	4 分	个 	/ /Þ 4∱	4	1 👉	个 		4 ₽	个	, t _β (t _β)
	, A) II.	, h		} '' ''	- 1	' (+)		7	N N) II.
LANE	1	1 1		1	1 1		1	1	1 '	1	1	1 1	
	Phasir	ng F	RTOR	Phasir	ng	RTOR		Phasi	ng	RTOR	Phasi	ng	RTOR
SIGNAL	Perm	1	Auto	Pern	1	Auto		Pern	n	Auto	Pern	n	Auto
							<u> </u>						


N/S:	Tampa Ave	W/E:	Victory BI	I/S No:	18
AM/PM: P	M Comments	S: Cumulative Bas	se		
COUNT DA	TE:	STUDY DATE:	GRO	WTH FACTOR:	

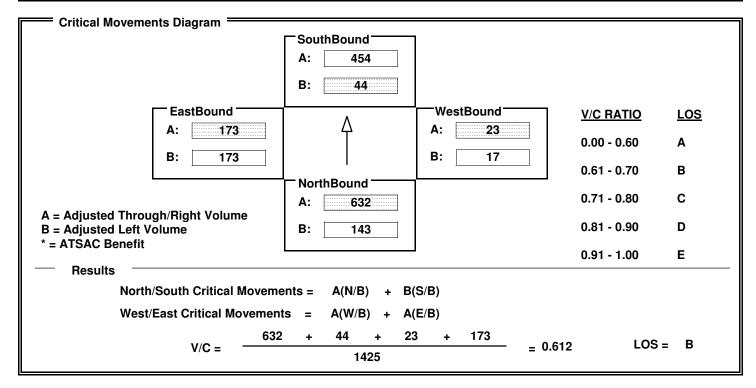
Volume	e/Lane/Sig	gnal Conf	iguratior	ıs ——									
	NO	RTHBOU	ND	SO	SOUTHBOUND			WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	174	1191	114	205	658	133		61	1530	204	107	1747	40
AMBIENT													
RELATED													
PROJECT													
TOTAL	174	1191	114	205	658	133] [61	1530	204	107	1747	40
LANE	∮ ∯	个	; r (₁r) 1	, v	↑ ♠ ↑ 2	<u>}</u>		1	↑ ♠ ↑ 1 1		竹 分	个	\(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\)
	Phasir	ng I	RTOR	Phasii	ng	RTOR		Phasin	ıg l	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto		Perm	1	Auto	Pern	n	Auto


N/S:	Wilbur Ave	W/E:	Victory BI	I/S No:	19
AM/PM: PM	Comments: C	umulative	Base		
COUNT DATE:	ST	UDY DATE:	GR	OWTH FACTOR:	

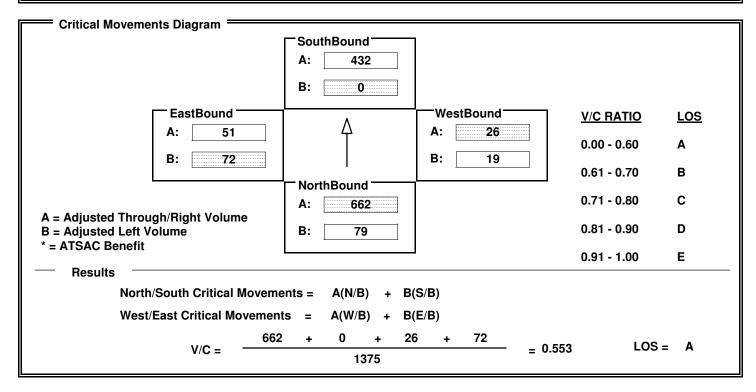
Volume	e/Lane/Sig	nnal Conf	iauration											
Volume	or Larier Oil	giiai Ooiii	iguratioi	13										
	NO	RTHBOU	ND	SO	SOUTHBOUND			WE	STBOU	VD	E/	EASTBOUND		
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT	
EXISTING	149	810	95	109	545	103		66	1481	219	136	1762	76	
AMBIENT														
RELATED														
PROJECT														
TOTAL	149	810	95	109	545	103		66	1481	219	136	1762	76	
LANE	f 分	个 命 负 1 1	lb dtb	h 於	↑ ∰ ↑ 1 1	<u> </u>	4	h 台 ' 1	↑ ♠ ↑ 1 1		♠ ♠	↑ ♠ ↑ 1 1		
	Phasir	ng F	RTOR	Phasir	ng l	RTOR		Phasin	ig l	RTOR	Phasir	ng	RTOR	
SIGNAL	Perm	1	Auto	Pern	1	Auto		Perm	1 .	Auto	Perm	1	Auto	


N/S:	Reseda E	BI W/E:	Victory BI	I/S No:	20						
AM/P	AM/PM: PM Comments: Cumulative Base										
coul	NT DATE:	STUDY DATE	:	GROWTH FACTOR:							

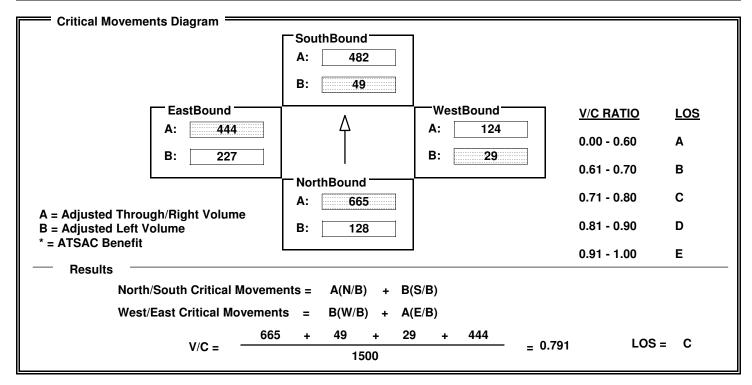
Volume	/Lane/Sig	nal Conf	iguratior	ıs ====								
	NO	RTHBOU	VD.	SO	UTHBOL	IND	W	ESTBOUN	ND.	E/	ASTBOUN	D
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	124	1135	118	94	854	172	103	1462	165	141	1652	115
AMBIENT												
RELATED												
PROJECT												
TOTAL	124	1135	118	94	854	172	103	1462	165	141	1652	115
LANE	փ Ք ′	↑ ♠ ♠ 1 1	_ IÞ 4∏Þ	∯ ∯ 1	个 命 ⁴ 1 1		f 分	수 슈 수 2	1 I	∮ ∰	↑ ∰ ↑ 2 1	, IP (HP
	Phasin	ng F	RTOR	Phasir	ng	RTOR	Phasii	ng l	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto	Prot-F	ix	Auto	Prot-F	ix	Auto


N/S:	De Soto A	ve W/E:	EI F	ancho Dr	I/S No:	21				
AM/PM: PM Comments: Cumulative Base										
COUN	NT DATE:	STUDY DATE	i:	GROWTH	FACTOR:					

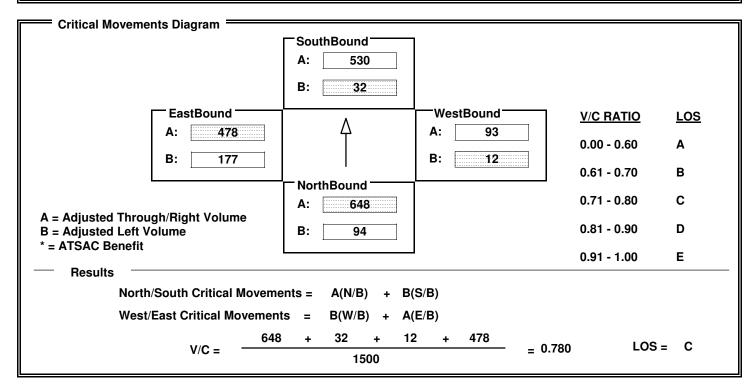
Volume	/Lane/Si	gnal Conf	iguration	ıs ====									
	NO	RTHBOU	ND	SO	UTHBOU	ND	W	STBOU	ND	E/	EASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	7	2024	190	6	1380	1	24	0	-1	2	0	6	
AMBIENT													
RELATED													
PROJECT													
TOTAL	7	2024	190	6	1380	1	24	0	-1	2	0	6	
LANE	. 4.	个	, I ₂ 4 ¹		수 슈 수 2 1		1	个 命 4	ι	f	个 	\(\frac{1}{4}\) \(\frac{1}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\	
	Phasir	ng F	RTOR	Phasii	ng l	RTOR	Phasir	ng	RTOR	Phasi	ng	RTOR	
SIGNAL	Perm	1	Auto	Pern	n	Auto	Perm	1	Auto	Pern	n	<none></none>	


N/S:		De Soto Av	/e	W/E:	Er	win St	I/S No:	22
AM/PM: PM Comments: Cumulative Base								
COUN	NT DATE:		SI	UDY DATE:		GR	OWTH FACTOR:	

── Volume	/I ane/Sid	gnal Confi	iguration	. ===									
Volume	# Larie/Oi	gilai Ooiiii	iguiatioi	13									
	NO	RTHBOU	VD.	SO	SOUTHBOUND			WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	143	1854	43	44	1147	215		17	16	23	213	23	283
AMBIENT													
RELATED													
PROJECT													
TOTAL	143	1854	43	44	1147	215		17	16	23	213	23	283
LANE		个	_	, N	수 🚓 숙 2 1	<u> </u>	փ 1	<i>₽</i> '	个	Ŷ 1	f 分 4	↑ ♠ 1 1	φ φ φ 1
	Phasir	ng F	RTOR	Phasii	ng	RTOR		Phasin	ng	RTOR	Phasin	g	RTOR
SIGNAL	Perm	1 /	Auto	Pern	n	Auto		Split		Auto	Split		Auto


N/S:	,	Winnetka Ave	W/E:	Brahma Dr/Calvert St	I/S No:	23				
AM/PM: PM Comments: Cumulative Base										
COU	NT DATE:		STUDY DATE:	GROWTH	TH FACTOR:					

Volume	/Lane/Sig	nal Confi	guration	ns										
	NORTHBOUND			SO	SOUTHBOUND			WES	STBOU	EASTBOUND				
	LT	TH	RT	LT	TH	RT	_	LT	TH	RT	LT	TH	,	RT
EXISTING	79	1323	0	11	864	74		19	4	22	130	0		91
AMBIENT														
RELATED														
PROJECT														
TOTAL	79	1323	0	11	864	74		19	4	22	130	0		91
LANE	ή ₄ γ	NV V	lþ (d⊅	, N	Ŷ ∰ Ŷ 2	1	4	1 & A		<u>}</u>	Φ ∯ 2	↑ ♠	\$	↑↑1
	Phasing	g R	TOR	Phasin	ng	RTOR		Phasing	3	RTOR	Phasi	ng	R	ΓOR
SIGNAL	Prot-Fi	x <n< td=""><td>one></td><td>Perm</td><td>1</td><td>OLA</td><td></td><td>Split</td><td></td><td>Auto</td><td>Spli</td><td>it</td><td>Α</td><td>uto</td></n<>	one>	Perm	1	OLA		Split		Auto	Spli	it	Α	uto


N/S:		De Soto Ave	W/E:	O	knard St	I/S No:	24		
AM/PM: PM Comments: Cumulative Base									
cou	NT DATE:		STUDY DATE:		GROV	GROWTH FACTOR:			

Volume	/Lana/Si	gnal Conf	iauration	. =										
Volume	e/Lane/Si	giiai Coiii	iguratioi	15										
	NO	NORTHBOUND			SOUTHBOUND			W	ESTBOU	ND	E/	FASTBOUND		
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT	
EXISTING	128	1817	177	49	1261	184		29	222	25	227	444	242	
AMBIENT														
RELATED														
PROJECT														
					1									
TOTAL	128	1817	177	49	1261	184		29	222	25	227	444	242	
LANE	Φ ∰ 1	수 _仲 숙 2 1	; r> 4T>	, <u> </u>	个		փ 1	F I	个 余 4 1 1		f 分	↑ ♠ ↑ 1	\$	
	Phasir	ng F	RTOR	Phasi	ng	RTOR	F	Phasi	ng	RTOR	Phasir	ng	RTOR	
SIGNAL	Pern	1	Auto	Pern	n	Auto		Pern	n	Auto	Perm	1	Auto	

N/S:	Winnetka Ave	W/E:	Oxnard St	I/S No:	25
AM/PM: PN	Comments	S: Cumulative Base	9		
COUNT DAT	E:	STUDY DATE:	GROW	/TH FACTOR:	

Volume	e/Lane/Si	gnal Confi	guration	ns									
	NO	RTHBOU	ND	SO	UTHBOU	IND		WE	STBOL	IND	E/	STBOU	ND
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	94	1232	63	32	952	108	•	12	63	18	177	478	59
AMBIENT													
RELATED													
PROJECT													
TOTAL	94	1232	63	32	952	108		12	63	18	177	478	59
LANE	h 分 1	↑ ♠ ♠ 1 1	lb (41¢)	竹 分	个 命 行 1 1		ф	₽	1	\$ P \$P	f 分	个	↑ ↑ ↑ 1
	Phasii	ng F	TOR	Phasii	ng	RTOR	Р	hasin	g	RTOR	Phasir	ng	RTOR
SIGNAL	Pern	n /	Auto	Pern	n	Auto		Perm		Auto	Pern	1	Auto

N/S:		De Soto A	ve .	W/E:	Bui	bank Bl	I/S No:	26
AM/PI	M: PM		Comments:	Cumulative	Base			
COU	NT DATE:		S	TUDY DATE:		GRO	WTH FACTOR:	

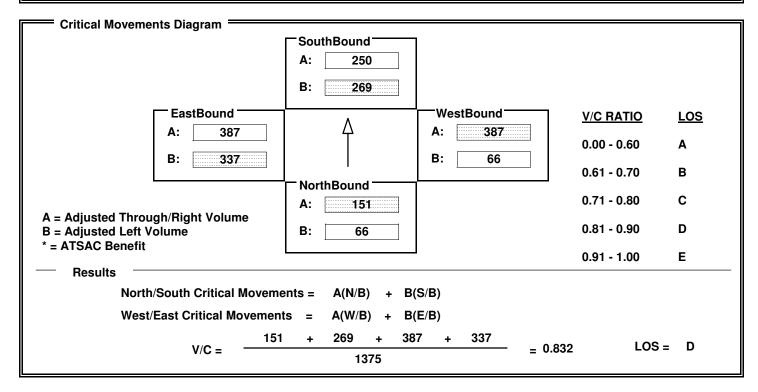
- Volume	/I ana/Si	gnal Conf	iauration	. = =									
Volume	5/Lane/Si	gilai Colli	iguratioi	13									
	NO	RTHBOU	VD.	SO	UTHBOU	ND		WI	STBOU	ND	EA	STBOU	ND
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	88	1413	0	0	1832	168		0	0	0	649	0	535
AMBIENT													
RELATED													
PROJECT													
TOTAL		4440	_		1000	400		•			0.40		505
TOTAL	88	1413	0	0	1832	168		0	0	0	649	0	535
LANE	♠ ♣ 1	↑ ♠ ♠ 3		, <u> </u>	个	<u></u>	4 1	护	↑ ♠ [∠]	\$	4 Å	^ _{&} 4	2
	Phasir	ng F	RTOR	Phasi	ng I	RTOR	ı	Phasir	ng	RTOR	Phasin	g	RTOR
SIGNAL	Perm	n <r< td=""><td>none></td><td>Pern</td><td>n .</td><td>Auto</td><td></td><td></td><td></td><td></td><td>Split</td><td></td><td>Auto</td></r<>	none>	Pern	n .	Auto					Split		Auto

Critical Movements Diagram				
	A: 667 B: 0			
EastBound —	Λ	WestBound	V/C RATIO	<u>LOS</u>
A: 294 B: 357		A: 0 B: 0	0.00 - 0.60	A
J			0.61 - 0.70	В
A Adimated Threewall /Dight Volume	NorthBound A: 471		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 88		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = $B(N/B) + A($	S/B)		
West/East Critical Movemen	ts = A(W/B) + B(E/B)		
V/C =88	+ 667 + 0	+ 357 = 0.741	LOS =	С
V/C =	1500	= 0.741		J

N/S:	De Soto Ave	W/E:	101 WB Ramps	I/S No:	27
AM/PI	M: PM Comments:	Cumulative Bas	se		
COU	NT DATE:	TUDY DATE:	GROW	TH FACTOR:	

Volume	/Lane/Si	gnal Confi	guration	ns ====								
	NO	RTHBOU	ND	SO	SOUTHBOUND			STBOU	ND	E	ASTBOU	ΝD
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	248	1098	0	0	1521	633	283	0	527	0	0	0
AMBIENT												
RELATED												
PROJECT												
TOTAL	248	1098	0	0	1521	633	283	0	527	0	0	0
LANE	4 A	↑ ♠ ♠ 2	L⊅ 4T⊅		수 分 4	1	f 分	个 _余 ′	↑ ↑ ↑	4 &	个 	<u></u>
	Phasii	ng F	TOR	Phasi	ng	RTOR	Phasir	ng	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	Fix		Pern	n <	none>	Split	t	Auto			

Critical Movements Diagram				
Ontical Movements Diagram	A: 633 B: 0			
EastBound		WestBound	V/C RATIO	<u>LOS</u>
A: 0 B: 0		A: 270 B: 270	0.00 - 0.60	A
В		B. 270	0.61 - 0.70	В
	NorthBound A: 549		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 248		0.81 - 0.90	D
* = ATSAC Benefit	<u></u>		0.91 - 1.00	E
North/South Critical Moveme	ents = $B(N/B)$ + $A($	S/B)		
West/East Critical Movemen	its = $A(W/B) + A(W/B)$	E/B)		
V/C = 248	3 + 633 + 27	0 + 0 = 0.808	LOS =	D
V/C =	1425	⊒ 0.000		_

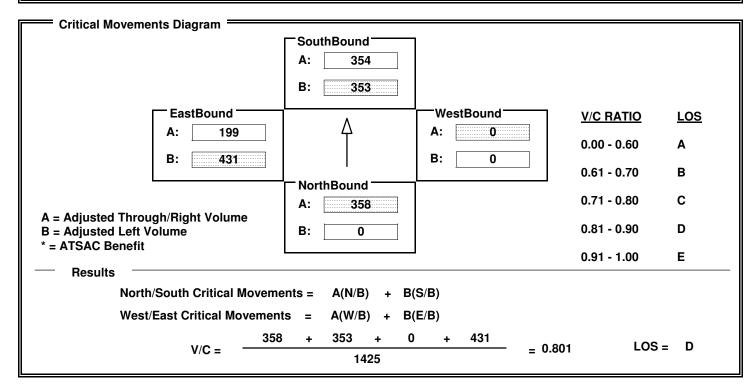

N/S:	De Soto Ave	W/E:	101 EB Ramps	I/S No:	28
AM/PM: PM	Comments:	Cumulative	Base		
COUNT DATE:	ST	UDY DATE:	GROW	TH FACTOR:	

Volume	/Lane/Si	gnal Conf	iguration	ıs ====								
	NO	RTHBOU	ND	SO	SOUTHBOUND			ESTBOU	ND	EA	STBOU	ND
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	0	805	253	917	841	0	0	0	0	564	3	237
AMBIENT												
RELATED												
PROJECT												
TOTAL	0	805	253	917	841	0	0	0	0	564	3	237
LANE	ф П	↑ ♠ ↑ 3	;	, v	个	<u>}</u>	ф [↑ ♠ ́	<u>}</u> ↑ ₩	1 1	全	<u>}</u>
	Phasir	ng l	RTOR	Phasir	ng	RTOR	Phasi	ng	RTOR	Phasin	g	RTOR
SIGNAL	Pern	n .	Auto	Prot-F	ix <	none>				Split		Auto

Critical Movements Diagram				
	SouthBound A: 421 B: 504			
EastBound —	Λ	WestBound	V/C RATIO	<u>LOS</u>
A: 284 B: 284		A: 0 B: 0	0.00 - 0.60	A
B. 204	<u> </u>	<u> </u>	0.61 - 0.70	В
	NorthBound		0.71 - 0.80	С
A = Adjusted Through/Right Volume	A: 268		0.71 - 0.00	O
B = Adjusted Left Volume	B: 0		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
North/South Critical Moveme	ents = $A(N/B)$ + $B($	S/B)		
West/East Critical Movemen	ts = A(W/B) + A(W/B)	(E/B)		
268	3 + 504 + 0		LOS =	С
V/C =	1425	= 0.741	LO3 =	C

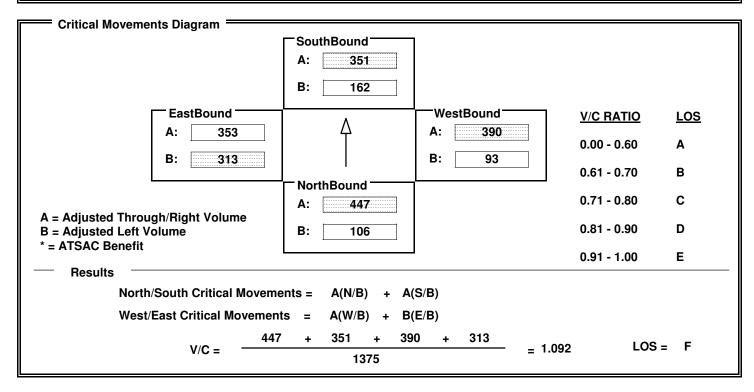
N/S: [De Soto A	we W/E:	Ventura B	l/S No	: 29
AM/PI	M: PM	Comments: Cumulative	e Base		
cou	NT DATE:	STUDY DATE	:	GROWTH FACTOR:	

Volume	/Lane/Sig	nal Confi	guration	is									
	NOF	RTHBOUN	ID	SO	UTHBOU	ND		WE	STBOU	ΝD	FASTBOUND		
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	66	213	88	489	250	361		66	1162	465	337	1084	76
AMBIENT													
RELATED													
PROJECT													
TOTAL	66	213	88	489	250	361		66	1162	465	337	1084	76
LANE	4 A		↑ 4 _T \$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	↑ ∰ ↑ 1	<u>1</u>	[<u></u>	↑ ∰ ↑ 3	<u>\</u>	∯ ∰ 1	↑ ∰ ↑ 2 1	
	Phasin	g R	TOR	Phasir	ng	RTOR		Phasin	ng l	RTOR	Phasii	ng	RTOR
SIGNAL	Split		Auto	Split	t	OLA		Perm	1	OLA	Prot-F	ix	Auto


N/S:	Winnetka Ave	W/E:	101 WB Ramps	I/S No:	30						
AM/PM: PM	M: PM Comments: Cumulative Base										
COUNT DATE:	ST	UDY DATE:	GROV	/TH FACTOR:							

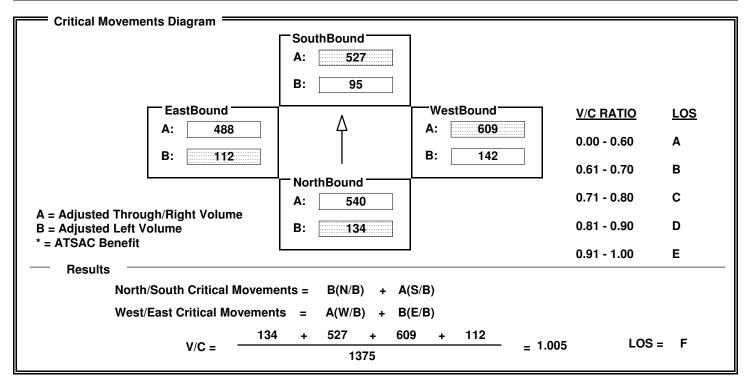
Volume	e/Lane/Sigr	nal Confi	guration	s ====								
	NOR	THBOUN	ID	SO	UTHBOU	IND	WE	STBOU	ND	FASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	207	825	0	0	816	298	318	13	534	0	0	0
AMBIENT												
RELATED												
PROJECT												
TOTAL	207	825	0	0	816	298	318	13	534	0	0	0
LANE		NV V		, N	个	1	ή φ ′ 1	↑ ♠ ↑ 1	\(\frac{1}{4}\) \(\begin{picture}(1) \\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	φ β '	↑ ♠ 1	β φ Φ
	Phasing	j R	TOR	Phasir	ng	RTOR	Phasin	ıg	RTOR	Phasir	ıg	RTOR
SIGNAL	Prot-Fix	<n< td=""><td>ione></td><td>Perm</td><td>1 <</td><td>none></td><td>Split</td><td></td><td>Auto</td><td></td><td></td><td></td></n<>	ione>	Perm	1 <	none>	Split		Auto			

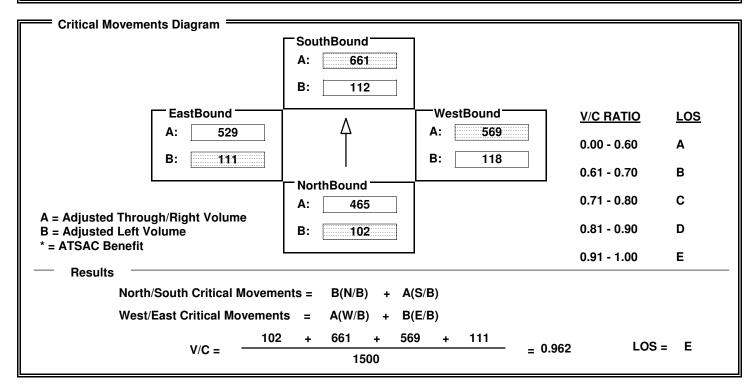
Critical Movements Diagram				
	SouthBound A: 408 B: 0			
EastBound —	Λ	WestBound	V/C RATIO	LOS
A: 0		A: 288 B: 288	0.00 - 0.60	A
] ' _	2. 200	0.61 - 0.70	В
	NorthBound		0.71 - 0.80	С
A = Adjusted Through/Right Volume	A: 413		0.71 - 0.00	C
B = Adjusted Left Volume	B: 207		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results			0.01 1.00	
North/South Critical Moveme	ents = $B(N/B) + A($	S/B)		
West/East Critical Movemen	ts = A(W/B) + A(E/B)		
207	` ,	·		
V/C =	1425	= 0.634	LOS =	В
	1425			


N/S:	Winnetka Ave	W/E:	101 EB Ramps	I/S No:	31
AM/PM: PN	Comments	S: Cumulative Bas	е		
COUNT DAT	E:	STUDY DATE:	GROWT	H FACTOR:	

	NOF	NORTHBOUND			SOUTHBOUND			STBOU	ND	EASTBOUND			
EXISTING	LT 0	тн 715	RT 279	LT 353	тн 708	RT O	LT 0	тн 0	RT 0	LT 431	тн 0	RT 199	
AMBIENT													
RELATED PROJECT													
TOTAL	0	715	279	353	708	0	0	0	0	431	0	199	
LANE	♠ ♠ ∠				↑ 🚓 ↑ 2	, t _p _q t _p	ф ф ́	个 				½	
SIGNAL	Phasin Perm		RTOR Auto	Phasin Prot-F		RTOR none>	Phasir	ng	RTOR	Phasin Split		RTOR Auto	

N/S:	Winnetka Ave	W/E:	Ventura BI	I/S No:	32						
AM/PM: PM Comments: Cumulative Base											
COUNT DAT	E:	STUDY DATE:	GROW	TH FACTOR:							

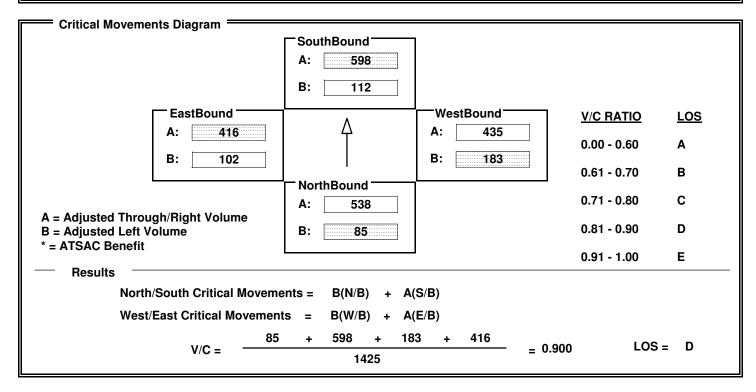

Volume	e/Lane/Sig	nal Confi	guration	s									
	NOF	THBOUN	D	SO	UTHBOL	IND	ıĪ	WE	STBOU	ND	FASTBOUND		
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	106	401	46	294	351	218		93	779	310	313	950	109
AMBIENT													
RELATED													
PROJECT													
TOTAL	106	401	46	294	351	218		93	779	310	313	950	109
LANE	4 A	分 分	¹ β 4ηδ	ி ப் 2	个 俞 行 1	\(\frac{1}{2}\)			↑ 🚓 ↑ 2	½ / ↑ √ ↑ 1	f 分	↑ ∰ [∠] 2	1
	Phasin	g R	TOR	Phasii	ng	RTOR		Phasin	g	RTOR	Phasir	ng	RTOR
SIGNAL	Split	A	uto	Spli	t	OLA		Perm	1	OLA	Prot-F	ix	Auto


N/S:	De Soto Ave	W/E:	Saticoy St	I/S No:								
AM/PM: AM Comments: Cumulative Plus Project												
COUNT D	ATE:	STUDY DATE: GROWTH FACTOR:										

- Volume	/Lana/Sia	gnal Conf	iauration	. ===									
Volume	s/Lane/Siç	giiai Coili	iguratioi	15									
	NO	RTHBOU	ND	SC	UTHBOU	ND		WESTBOL	JND	EASTBOUND			
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	134	950	130	95	1435	146	142	2 1149	69	112	888	87	
AMBIENT													
RELATED													
PROJECT													
TOTAL	134	950	130	95	1435	146	142	2 1149	69	112	888	87	
	<i>1</i> . ^	^ ^ ^	J. A.A.		^ ^ ^			\	^ <u> </u>	4 ^	^ ^ ^		
	₹	$\uparrow \Leftrightarrow \uparrow$, t ₂	4 ₽	个 命 台	\$ 12 AD	4 5	· 수 🎋	\$ P \$P	∮ \$\frac{1}{2} \cdot \frac{1}{2}	7 66 9) ID (H)	
LANE	1	1 1		1	2 1		1	1	1	1	1 1		
	Phasir	ng F	RTOR	Phasi	ng	RTOR	Pha	sing	RTOR	Phasin	ıq	RTOR	
SIGNAL	Prot-F	·IX	Auto	Prot-F	-IX	Auto	Pe	erm	Auto	Prot-F	IX	Auto	

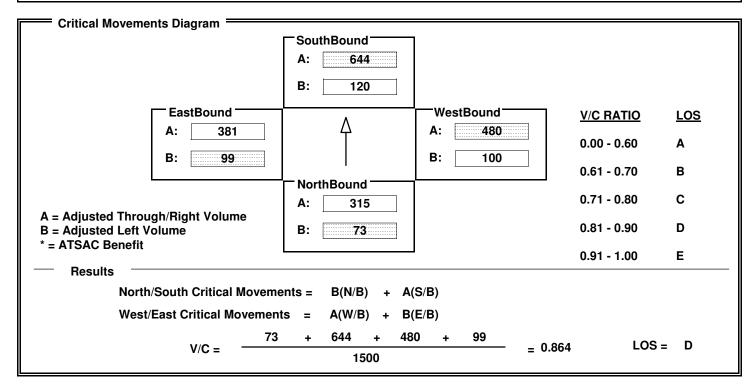
N/S:	Mason Ave	W/E:	Saticoy St	I/S No:	2						
AM/PM: AM Comments: Cumulative Plus Project											
COUNT DAT	E:	STUDY DATE:	GROW	VTH FACTOR:							

Volume	/Lane/Sig	nal Confi	guration	ıs ====								
	NOF	RTHBOUN	D	SO	UTHBOU	ND	W	ESTBOUN	ND	FASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	102	847	82	112	1201	121	118	1045	92	111	967	91
AMBIENT												
RELATED												
PROJECT												
TOTAL	102	847	82	112	1201	121	118	1045	92	111	967	91
LANE	4 4 4 1 1		lр фф	փ ∰ ′	个		∯ ∰ 1	个		↑ ↑	↑ ♠ ↑ 1 ·	\(\frac{1}{2}\) \(\frac{1}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\) \(\frac{1}{2}\
	Phasin	g R	TOR	Phasir	ng l	RTOR	Phasi	ng I	RTOR	Phasir	ng	RTOR
SIGNAL	Perm	Δ	uto	Perm	1	Auto	Pern	1	Auto	Perm	1	Auto

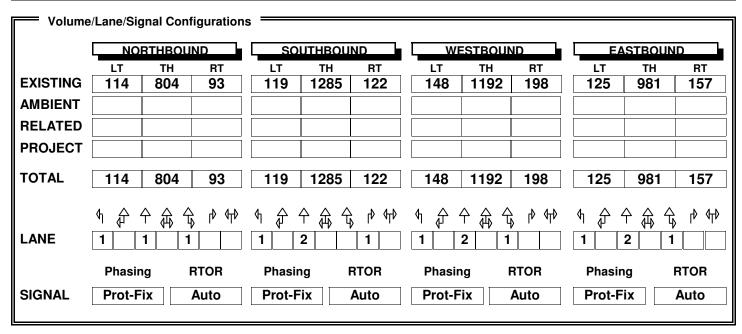

N/S:		Winnetka A	ve	W/E:	Sat	icoy St	I/S No:	3			
AM/PM: AM Comments: Cumulative Plus Project											
COU	NT DATE:		STI	JDY DATE:		GRO	WTH FACTOR:				

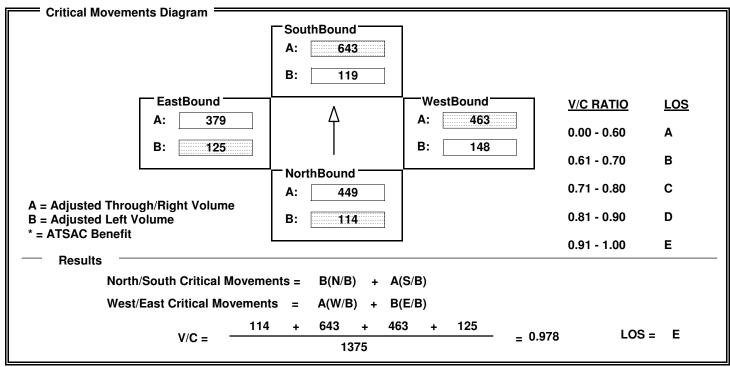
Volume	e/Lane/Sig	anal Cant	iauration	. ===								
Volume	e/Lane/Siç	giiai Coili	iguratioi	15								
	NO	RTHBOU	ND	SO	UTHBOU	ND		WESTBOU	ND	EA	STBOUN	ID
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	110	818	121	130	1157	133	96	960	133	118	877	129
AMBIENT												
RELATED												
PROJECT												
												-
TOTAL	110	818	121	130	1157	133	96	960	133	118	877	129
LANE	4 A	个 命 句 1 1	;	竹 分	↑ ♠ ↑ 2	\$	փ գն 1	十	<u> </u>	f 分 f	↑ ♠ ↑ 1 1	\$
	Phasir	ng I	RTOR	Phasi	ng l	RTOR	Pha	sing	RTOR	Phasin	ıg	RTOR
SIGNAL	Perm	1	Auto	Pern	n	Auto	Pe	rm	Auto	Perm	1	Auto

Critical Movements Diagram				
	SouthBound A: 579 B: 130			
EastBound —	Λ	WestBound	V/C RATIO	LOS
A: 503 B: 118		A: 547 B: 96	0.00 - 0.60	A
	L., ., <u>,</u> '		0.61 - 0.70	В
A Adjusted Through (Dight Volume	NorthBound A: 470		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 110		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = $B(N/B) + A($	S/B)		
West/East Critical Movemen	ts = A(W/B) + B(E/B)		
110	+ 579 + 54	7 + 118 = 0.903	LOS =	E
V/C =	1500		100 -	_

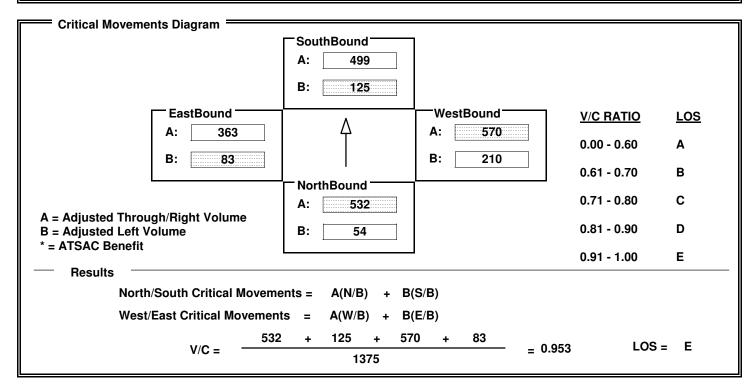

N/S:	De Soto Ave	W/E:	Sherman Way	I/S No:	4						
AM/PM: AM Comments: Cumulative Plus Project											
COUNT DAT	E: §	STUDY DATE:	GROW	TH FACTOR:							

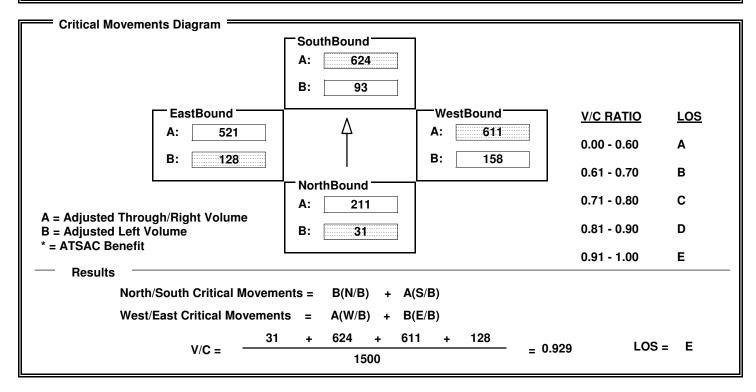
Volume/	Lane/Sig	nal Confi	iguration	ıs ====									
[NOF	RTHBOU	ND.	SO	UTHBOU	ND	, [WE	STBOUN	VD	E/	ASTBOU	ND
_	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	85	972	104	112	1627	167		183	1190	116	102	1158	89
AMBIENT													
RELATED													
PROJECT													
TOTAL	85	972	104	112	1627	167		183	1190	116	102	1158	89
LANE [1 ·		_ t> 4±>		2 1	<u>}</u>			↑ ♠ ႖ 2 1		f 分 1	수	<u>}</u>
	Phasin	g F	RTOR	Phasir	ng l	RTOR		Phasin	ıg F	RTOR	Phasi	ng	RTOR
SIGNAL	Perm		Auto	Pern	1	Auto		Prot-F	ix	Auto	Prot-F	ix	Auto



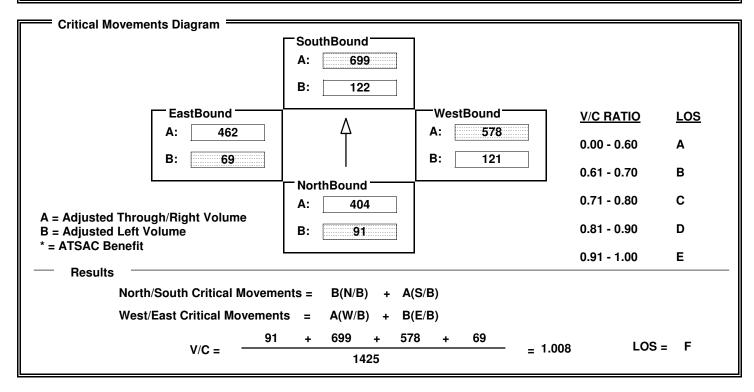

N/S:	Mason Ave		W/E:	She	rman Way	I/S No:	5			
AM/PM: AM Comments: Cumulative Plus Project										
COU	NT DATE:		STUDY DATE:		GROWTI	H FACTOR:				

Volume	/Lane/Sig	nal Confi	guration	ıs ——								
	NO	RTHBOU	ND	SO	UTHBOU	ND	W	ESTBOU	VD	E/	ASTBOUN	ID
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	73	585	45	120	1140	147	100	1341	98	99	1071	71
AMBIENT												
RELATED												
PROJECT												
TOTAL	73	585	45	120	1140	147	100	1341	98	99	1071	71
LANE	f 分 4		lb (4tb)	f 分	个		h 分 1	↑ ♠ ↑ 2 1	↑ ♦ ♦	f 分	↑ ♠ ↑ 2 1	}
	Phasin	g F	TOR	Phasii	ng I	RTOR	Phasi	ng I	RTOR	Phasi	ng	RTOR
SIGNAL	Perm	1	Auto	Pern	n	Auto	Pern	n	Auto	Pern	n	Auto


N/S:	Winnetk	a Ave	W/E:	Sherman Wa	ay	I/S No:	6					
AM/P	AM/PM: AM Comments: Cumulative Plus Project											
COU	NT DATE:	STUDY	DATE:		GROWTH F	ACTOR:						


N/S:	De Soto Ave	W/E:	Vanowen St	I/S No:	7					
AM/PM: AM Comments: Cumulative Plus Project										
COUNT DATE:	ST	UDY DATE:	GROWTH	FACTOR:						

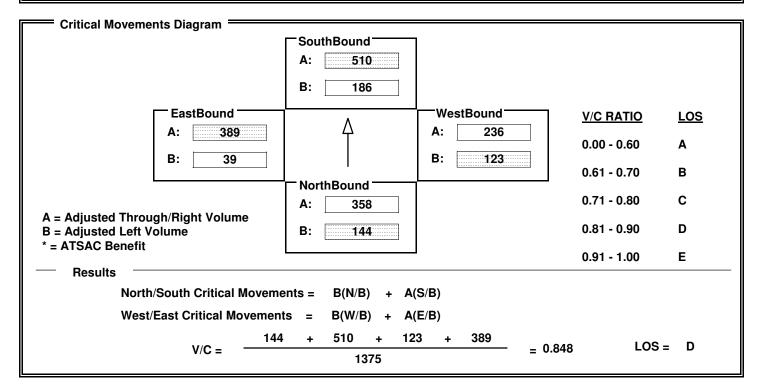
Volume	e/Lane/Sig	gnal Conf	iguration	ıs ====									
	NO	RTHBOU	ND	SO	UTHBOU	ND	ιĘ	W	STBOU	ND	E	ASTBOU	ND
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	54	957	106	125	1311	186		210	1140	117	83	1007	82
AMBIENT													
RELATED													
PROJECT													
TOTAL	54	957	106	125	1311	186		210	1140	117	83	1007	82
LANE	f 分	个 命 句 1 1	 	, ,	↑ ♠ ↑ 2 1		4	N I	↑ ♠ ↑ 2	<u>}</u>	♠ ☆ 1	↑ ♣ [∠]	1
	Phasir	ng I	RTOR	Phasii	ng l	RTOR		Phasir	ng l	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto		Prot-F	ix	Auto	Prot-F	Fix	Auto


N/S:	Mason Ave	W/E:	Vanowen St	I/S No:	8					
AM/PM: AM	M/PM: AM Comments: Cumulative Plus Project									
COUNT DATE:	ST	UDY DATE:	GF	ROWTH FACTOR:						

volume	/Lane/Sig						·					
	NOF	THBOUN	ID	SO	UTHBOU	ND	W	ESTBOUN	VD	EASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	31	374	48	93	1041	206	158	1125	97	128	959	82
AMBIENT												
RELATED												
PROJECT												
TOTAL	31	374	48	93	1041	206	158	1125	97	128	959	82
LANE	4 4 4 1 1		δ φ _τ δ	փ ∰ 1	个 _价 仓 1 1	, t ₂ (4)	^t η Δ ¹ 1	个		竹 分 ′	个 _价 〈	2
	Phasin	g R	TOR	Phasii	ng l	RTOR	Phasi	ng l	RTOR	Phasir	ng	RTOR
SIGNAL	Perm	-	luto	Pern	n	Auto	Perr	n .	Auto	Perm	1	Auto

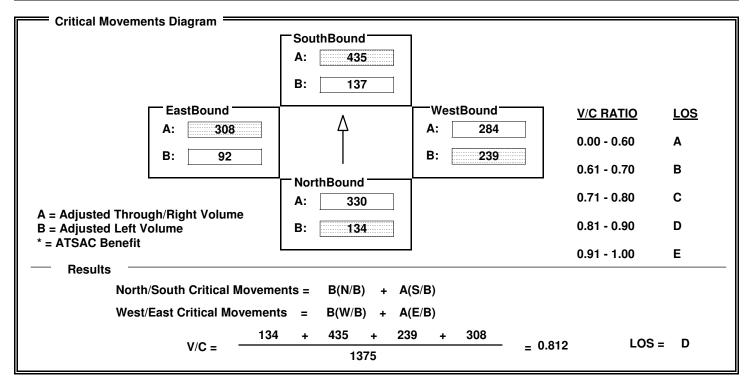
N/S:	Winnetka Ave	W/E:	Vanowen St	I/S No:	9
AM/PM: AN	Comments	: Cumulative Plu	s Project		
COUNT DAT	E:	STUDY DATE:	GROW	TH FACTOR:	

Volume	e/Lane/Sig	gnal Conf	iguration	ıs									
	NO	RTHBOU	ND	SOUTHBOUND			W	WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	91	702	106	122	1256	141	121	1049	106	69	837	86	
AMBIENT													
RELATED													
PROJECT													
TOTAL	91	702	106	122	1256	141	121	1049	106	69	837	86	
LANE	f	个 命 句 1 1	 	1	个 余 仓 1 1		♠ ☆ 1	个	<u>ф</u> ф ф	f 分	个	1	
	Phasir	ng l	RTOR	Phasir	ng	RTOR	Phasi	ng l	RTOR	Phasir	ng	RTOR	
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto	Perr	n	Auto	Pern	1	Auto	
								· ·					

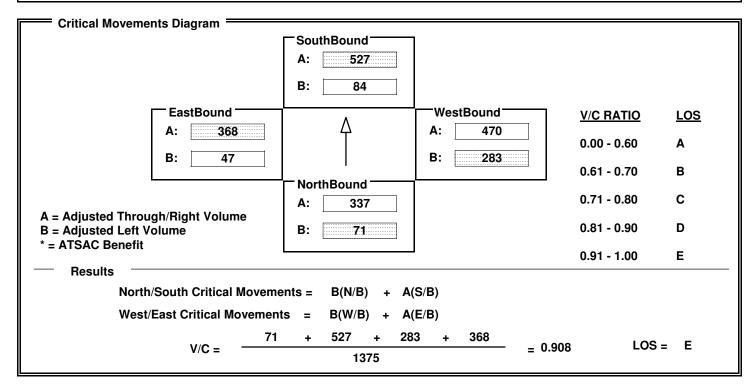

N/S:		Shoup Ave		W/E:	Vic	tory BI	I/S No:	10
AM/PI	M: AM		Comments: Cı	umulative	Plus Project			
COU	NT DATE:		STU	DY DATE:		GRO	WTH FACTOR:	

── Volume	/l ana/Sia	anal Canfi	auration	. ===								
Volume	e/Lane/Sig	gilai Collii	guratioi	15								
	NO	RTHBOU	ND	SO	UTHBOU	ND		WESTBOU	ND	EA	STBOUN	ID
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	110	749	50	135	1351	77	107	815	84	103	996	283
AMBIENT												
RELATED												
PROJECT												
TOTAL	110	749	50	135	1351	77	107	815	84	103	996	283
LANE		个	լ ⟩ ⟨դ⟩	竹 矿	个 命 仓 1 1	<u>}</u>	փ գի 1	· 수 命 ·	Ŷ (†)	h 分 '	↑ ∰ † 1 1	\$
	Phasir	ng F	TOR	Phasi	ng l	RTOR	Pha	sing	RTOR	Phasin	ıg	RTOR
SIGNAL	Perm	1	Auto	Pern	n	Auto	Pe	rm	Auto	Perm	1	Auto
					, ,							

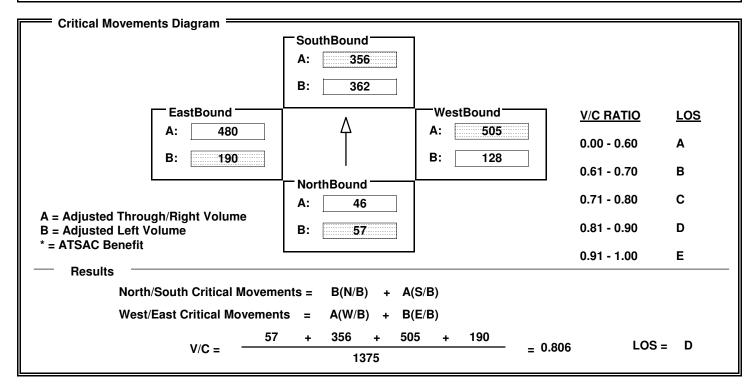
Critical Movements Diagram				
	SouthBound A: 714 B: 135			
EastBound —	1 ^	WestBound	V/C RATIO	<u>LOS</u>
A: 640 B: 103		A: 408 B: 107	0.00 - 0.60	A
5. 100			0.61 - 0.70	В
A Adimated Three cale /Dight Volume	NorthBound A: 375		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 110		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = $B(N/B) + A($	S/B)		
West/East Critical Movemen	ts = B(W/B) + A(E/B)		
V/C = 110) + 714 + 10	7 + 640 ₌ 1.047	LOS =	F
V/0 =	1500			


N/S: Topanga Can	yon Bl W/E:	Victory BI	I/S No: 11
AM/PM: AM	Comments: Cumulative Plus	Project	
COUNT DATE:	STUDY DATE:	GROW	TH FACTOR:

Volume/	/Lane/Sig	nal Confi	guration	ıs								
	NOF	THBOUN	ID	SO	SOUTHBOUND			WESTB	OUND	L	EASTBOU	IND
,	LT	TH	RT	LT	TH	RT	LT			LT	TH	RT
EXISTING	144	869	204	186	1422	108	22	4 70	8 128	70	1022	144
AMBIENT												
RELATED												
PROJECT												
TOTAL	144	869	204	186	1422	108	22	4 70	8 128	70	1022	144
LANE	4 £ 4	NV V		, N	↑ ♠ ф 2 1	<u>}</u>	փ <u>Հ</u>	3	全 体	2	2	∰ IÞ ∰ 1 ∥
	Phasing	g R	TOR	Phasir	ng F	RTOR	Pha	asing	RTOR	Pha	sing	RTOR
SIGNAL	Prot-Fi	x A	luto	Prot-F	ix	Auto	Pro	t-Fix	OLA	Prot	-Fix	Auto


N/S:	Canoga A	w/E:	Vict	ory Bl	I/S No:	12				
AM/P	AM/PM: AM Comments: Cumulative Plus Project									
cou	NT DATE:	STUDY DATE	i:	GROWTH F	ACTOR:					

── Volume	e/Lane/Sig	anal Conf	iauration	. ===									
Volume	e/Lane/Siç	gilai Colli	iguratioi	15									
	NO	RTHBOU	ND	SOUTHBOUND			Ę	WESTBOUND			E/	ASTBOUN	ID
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	134	873	118	137	1207	98		239	1069	67	92	923	163
AMBIENT													
RELATED							Ī						
PROJECT													
							_						
TOTAL	134	873	118	137	1207	98		239	1069	67	92	923	163
LANE	. 4.	个	<u>, </u>	N N	수 ф 仓 2 1		4	V	个	<u>}</u>	∮ ∰ 1	↑ ♠ ↑ 3	1
	Phasir	ng I	RTOR	Phasii	ng l	RTOR		Phasir	ng	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto		Prot-F	ix	OLA	Prot-F	ix	OLA


N/S:	De Soto Ave	W/E:	Victory BI	I/S No:	13
AM/PM: AM	Comments: C	umulative	Plus Project		
COUNT DATE:	ST	UDY DATE:	GI	ROWTH FACTOR:	

Volume	/Lane/Sig	nal Conf	guration	ıs ====								
	NOF	RTHBOU	ND	SO	SOUTHBOUND			/ESTBOU	ND	E	ASTBOUN	D
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	71	845	165	84	1395	187	515	1411	102	85	1054	50
AMBIENT												
RELATED												
PROJECT												
TOTAL	71	845	165	84	1395	187	515	1411	102	85	1054	50
LANE	1 2	分 负 负 2 1 1	lβ (4π)	, v	수 点 分 2 1	\$ \psi \psi \psi \psi \psi \psi \psi \psi	∮ ∰	↑ ♠ ↑ 3	\(\frac{1}{2}\)	∮ ∰	↑ ∰ † 2 1	, r\ 4\p\
	Phasin	g F	RTOR	Phasii	ng l	RTOR	Phas	ing	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-Fi	ix /	Auto	Prot-F	ix	Auto	Prot-	Fix <	none>	Prot-I	Fix	Auto

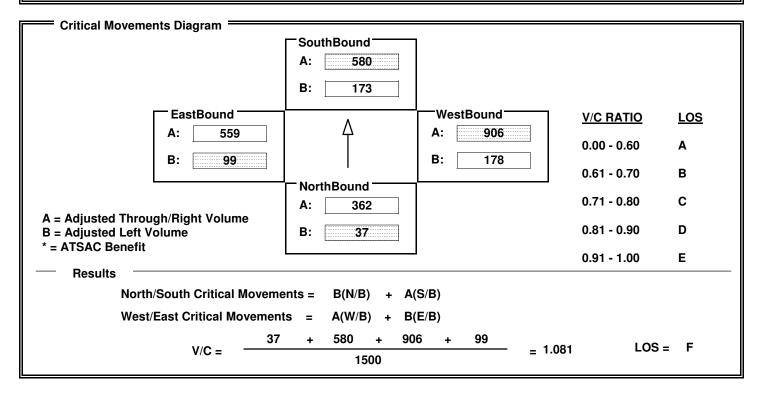
N/S:	Mason Ave	W/E:	Victory BI	I/S No:	14
AM/PM: AM	Comments: C	umulative Plus	s Project		
COUNT DATE:	STU	JDY DATE:	GROWT	H FACTOR:	

Volume	/Lane/Sid	gnal Conf	iguration	ıs ====									
		RTHBOU			SOUTHBOUND			W	ESTBOU	ND -		ASTBOU	ND •
	LT	TH	RT	LT	TH	RT		LT TH RT			LT	TH	RT
EXISTING	57	62	30	362	312	647		128	1515	112	190	1439	190
AMBIENT													
RELATED													
PROJECT													
TOTAL	57	62	30	362	312	647	•	128	1515	112	190	1439	190
LANE	¶ 分 1	个	lγ (41¢)	փ ∰ 1	个	2	փ 1	₽ I	↑ ♣ ↑	1 1	竹 矿	3	1 I
SIGNAL	Phasir Prot-F		RTOR Auto	Phasii Prot-F		RTOR none>		Phasi Prot-F		RTOR none>	Phas Prot-		RTOR Auto

N/S:	Winnetka Ave	W/E:	Victory BI	I/S No:	15
AM/PM: AM	Comments: C	umulative	Plus Project		
COUNT DATE:	STU	JDY DATE:	GROWTH	H FACTOR:	

Volume	e/Lane/Sig	gnal Conf	iguration	ıs									
	NO	RTHBOU	ND	SOUTHBOUND			W	WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	127	846	202	230	1099	238	332	1577	70	64	1312	243	
AMBIENT													
RELATED													
PROJECT													
TOTAL	127	846	202	230	1099	238	332	1577	70	64	1312	243	
LANE	有	个		, N	个		fy 分 1	2 1		f 分	↑ ♠ ↑ 2 1		
	Phasir	ng F	RTOR	Phasi	ng I	RTOR	Phasi	ng l	RTOR	Phasi	ng	RTOR	
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto	Prot-	Fix	Auto	Prot-F	ix	Auto	
					·								

Critical Movements Diagram				
5	SouthBound A: 446 B: 230			
EastBound —	1 ^	WestBound	V/C RATIO	LOS
A: 518 B: 64		A: 549 B: 332	0.00 - 0.60	A
	'		0.61 - 0.70	В
A - Adjusted Through/Right Volume	NorthBound A: 524		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 127		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = $A(N/B) + B($	S/B)		
West/East Critical Movemen	ts = B(W/B) + A(E/B)		
V/C = 524	+ 230 + 33	2 + 518 = 1.167	LOS =	F
V/C =	1375	≟ 1.107	_30 -	2


N/S:	Topham St	W/E:	Victory BI	I/S No:	16
AM/PM: AM	Comments:	Cumulative Pl	us Project		
COUNT DAT	E:	STUDY DATE:	GROW	TH FACTOR:	

Volume	/Lane/Sign				OUTUROUND L			CCTDOU	up L	EASTBOUND			
					SOUTHBOUND			WESTBOUND					
EXISTING	383	тн 0	RT 5	LT 0	тн О	RT O	LT O	TH 2033	RT O	LT 0	тн 1292	8T 453	
AMBIENT													
RELATED													
PROJECT													
TOTAL	383	0	5	0	0	0	0	2033	0	0	1292	453	
LANE	↑ ☆ 수1 	\$\frac{1}{4}\$	r> 4⊤> 1	ф ф	↑ ♠ [∠]	<u>}</u> ₼ ₼	ή _φ	↑ ∰ ↑ 2	7 b 44p	4 \$	수 슈 수 2	<u>†</u> ↑ ↑	
	Phasing	RT	OR	Phasii	ng	RTOR	Phasi	ng l	RTOR	Phasi	ng	RTOR	
SIGNAL	Prot-Fix	<no< td=""><td>ne></td><td>Pern</td><td>n</td><td>Auto</td><td>Perr</td><td>n <</td><td>none></td><td>Perr</td><td>n</td><td>OLA</td></no<>	ne>	Pern	n	Auto	Perr	n <	none>	Perr	n	OLA	

Critical Movements Diagram				
, and the second	SouthBound A: 0 B: 0			
EastBound	<u> </u>	WestBound	V/C RATIO	<u>LOS</u>
A: 646 B: 0		A: 1017 B: 0	0.00 - 0.60	Α
J	No which Down of	<u> </u>	0.61 - 0.70	В
A Adjusted Through/Dight Volume	NorthBound A: 5		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 383		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				_
North/South Critical Moveme	ents = $B(N/B) + A($	(S/B)		
West/East Critical Movemen	ts = A(W/B) + B((E/B)		
V/C = 383	3 + 0 + 10 ⁻ 1425	= 0.982	LOS =	E

N/S:	Corbin Ave	W/E:	Victory BI	I/S No:	17
AM/PM:	M Comments	: Cumulative Plus	s Project		
COUNT DA	TE:	STUDY DATE:	GRO	WTH FACTOR:	

── Volume	/Long/Si	anal Canf	iauratian	. ====									
Volume	e/Lane/Si	gnal Conf	iguratioi	15									
	NO	RTHBOU	ND	SO	UTHBOU	ND		WE	STBOU	VD.	E	ASTBOUN	1D
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	37	627	97	173	833	327		178	1648	163	99	1102	16
AMBIENT													
RELATED													
PROJECT													
TOTAL	37	627	97	173	833	327		178	1648	163	99	1102	16
LANE	∮ ↓ 1 1	수 森 숙 1 ■ 1	; rÞ 4⊤Þ	竹 矿	个 命 仓 1 1	7 LD 4TD	փ 1	₽	个 命 句 1 1	<u>2</u>	∮ ∯	个 命 仓 1 1	
	Phasir	ng F	RTOR	Phasir	ng l	RTOR		Phasin	ng I	RTOR	Phasir	ng	RTOR
SIGNAL	Pern	n ,	Auto	Perm	1	Auto		Perm	1	Auto	Pern	1	Auto

N/S:	Tam	pa Ave	W/E:	Victory	у ВІ	I/S No:	18
AM/PI	M: AM	Comments:	Cumulative F	Plus Project			
cou	NT DATE:	s	TUDY DATE:		GROWTH FA	ACTOR:	

Volume	e/Lane/Sig	nal Conf	iguration	. = ===									
Volume	si Lariei Siç	jiiai ooiii	iguration	13									
	NO	RTHBOU	ND	SO	UTHBOU	OUND		W	ESTBOU	ND	E	EASTBOUND	
	LT	TH	RT	LT	TH	RT	_	LT	TH	RT	LT	TH	RT
EXISTING	98	733	113	277	1208	238		85	1541	92	59	1447	46
AMBIENT													
RELATED													
PROJECT													
TOTAL		700	440	077	1000	000		0 -	4544			4447	10
TOTAL	98	733	113	277	1208	238		85	1541	92	59	1447	46
LANE	, N	个	<u>1</u> 1	, <u> </u>	수 ☆ 行 2	<u>\</u>	փ 1		↑ ♠ [∠]	<u></u> ↑ ₩	Φ ∯ 1	↑ ♣ ↑ 1 ·	1
	Phasin	ng F	RTOR	Phasi	ng	RTOR		Phasi	ng	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto		Pern	n	Auto	Perr	n	Auto

Critical Movements Diagram				
	SouthBound A: 604 B: 277			
EastBound —	Λ	WestBound	V/C RATIO	LOS
A: 747 B: 59		A: 817 B: 85	0.00 - 0.60	A
5. 33		5	0.61 - 0.70	В
A Adiocated Theorems / Display Velous	NorthBound A: 367		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 98		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = $B(N/B) + A($	S/B)		
West/East Critical Movement	ts = $A(W/B)$ + $B($	E/B)		
98	+ 604 + 81	7 + 59 ₌ 1.107	LOS =	F
V/C =	1425	= 1.107	200 -	•

N/S:		Wilbur Ave		W/E:	Vic	tory BI	I/S No:	19
AM/PI	M: AM		Comments: Cı	umulative	Plus Project			
COU	NT DATE:		STU	IDY DATE:		GRO	WTH FACTOR:	

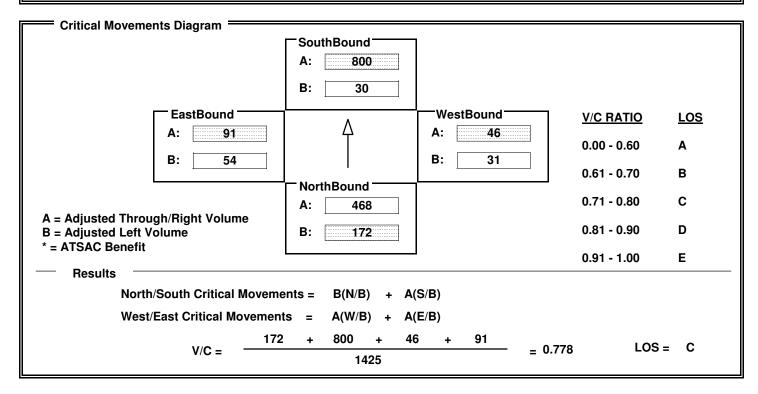
Volume	e/Lane/Sig	anal Conf	iguration	. = =									
Volume	e/Lane/Siç	gilai Colli	iguratioi	15									
	NO	RTHBOU	ND	SO	UTHBOU	ND	Г	W	ESTBOU	VD	E	ASTBOUN	ID
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	78	606	101	173	1239	167		78	1617	112	61	1653	129
AMBIENT													
RELATED							Ī						
PROJECT							Ī						
TOTAL	78	606	101	173	1239	167		78	1617	112	61	1653	129
	∮ & →	$\uparrow \Leftrightarrow \uparrow$	\$	ላ ঐ	$\uparrow \land \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow$	\	<	ክ 👉 :	$\uparrow \downarrow \uparrow	\	4 ₽	$\uparrow \stackrel{\wedge}{\bowtie} \stackrel{\wedge}{\bowtie}$	\$
LANE	1	1 1		1	1 1		Г	1	1 1		1	1 1	
		<u> </u>			• •		L	<u> </u>	· '		L• L	<u> </u>	
	Phasir	ng F	RTOR	Phasi	ng l	RTOR		Phasir	ng l	RTOR	Phasi	ng	RTOR
SIGNAL	Perm	1	Auto	Pern	n	Auto		Perm	1	Auto	Peri	n	Auto

Critical Movements Diagram				
	SouthBound A: 703 B: 173			
EastBound —	<u> </u>	WestBound	V/C RATIO	<u>LOS</u>
A: 891 B: 61		A: 865 B: 78	0.00 - 0.60	A
5		J	0.61 - 0.70	В
A Adiosal Thursdy (Biola Volume	NorthBound A: 354		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 78		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = $B(N/B) + A($	(S/B)		
West/East Critical Movemen	ts = B(W/B) + A((E/B)		
78	+ 703 + 78	3 + 891 = 1.167	LOS =	F
V/C =	1500	= 1.107	250 -	•

N/S:	Reseda BI	W/E:	Victory BI	I/S No:	20
AM/PM: AM	Comments: C	umulative	Plus Project		
COUNT DATE:	ST	UDY DATE:	GROV	VTH FACTOR:	

Volume	e/Lane/Sig	gnal Conf	iguratior	is									
	NO	RTHBOU	ND	SO	UTHBOU	ND	ı	WE	STBOU	ND	E	ASTBOU	ND
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	76	788	125	109	1068	180		98	1498	114	111	1824	73
AMBIENT													
RELATED													
PROJECT													
TOTAL	76	788	125	109	1068	180]	98	1498	114	111	1824	73
LANE	f 分 '	个 命 句 1 1		竹 分	个 命 句 1 1]		↑ ♠ ↑ 2	<u>}</u>	∮ ∳	2	1
	Phasin	ng F	RTOR	Phasii	ng F	RTOR		Phasin	ng I	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto		Prot-F	ix	Auto	Prot-F	Fix	Auto

Critical Movements Diagram				
	SouthBound A: 624 B: 109			
EastBound	Λ	WestBound	V/C RATIO	<u>LOS</u>
A: 632 B: 111		A: 749 B: 98	0.00 - 0.60	A
J		J	0.61 - 0.70	В
A Adimated Threewall /Dight Volume	NorthBound A: 457		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 76		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
North/South Critical Moveme	ents = $B(N/B) + A($	S/B)		
West/East Critical Movemen	ts = $A(W/B)$ + $B($	E/B)		
V/C - 76	+ 624 + 74	9 + 111 = 1.135	LOS =	F
V/C =	1375	= 1.133		-

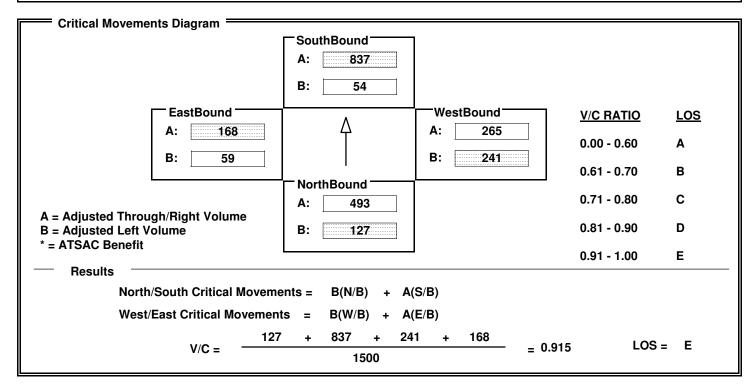

N/S:	De Soto Ave	W/E:	El Rancho Dr	I/S No:	21
AM/PM: AM	Comments: C	umulative	Plus Project		
COUNT DATE:	ST	JDY DATE:	GROWTI	H FACTOR:	

V1	/! /0:	1 0 6										
volume	e/Lane/Sig	gnal Conf	iguration	s ——								
	NO	RTHBOU	ND	SO	UTHBOU	ND	W	ESTBOUN	ND.	EA	STBOUN	ND
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	2	1762	129	43	2458	0	13	0	29	2	0	2
AMBIENT												
RELATED												
PROJECT												
TOTAL	2	1762	129	43	2458	0	13	0	29	2	0	2
LANE		↑ ♠ ♠ 2 1		竹 分	个		析 1	个 余 句 1		ή _φ ′	^ ^ ^ 1	<u>↑</u>
	Phasir	ng F	RTOR	Phasi	ng I	RTOR	Phasi	ng I	RTOR	Phasin	g	RTOR
SIGNAL	Perm	ו	Auto	Pern	n	Auto	Pern	n .	Auto	Perm		none>
i												

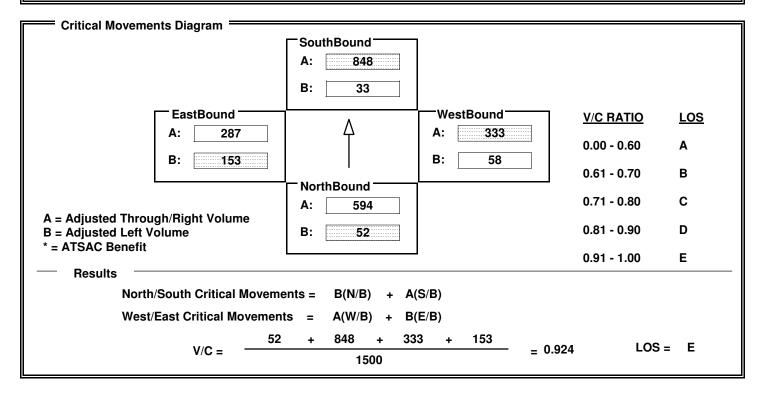
Critical Movements Diagram				
Ontious movements stagram	SouthBound A: 819 B: 43			
EastBound	Λ	WestBound	V/C RATIO	<u>LOS</u>
A: 2 B: 2		A: 29 B: 13	0.00 - 0.60	A
D	<u> </u>	B. 13	0.61 - 0.70	В
A Adimand Thursday (Display Values	NorthBound A: 630		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 2		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Movement	ents = $B(N/B) + A($	(S/B)		
West/East Critical Movemen	its = $A(W/B)$ + $B($	(E/B)		
V/C - 2	+ 819 + 29	9 + 2 = 0.568	LOS =	Α
V/C =	1500	= 0.500		

N/S:	De Soto Ave	W/E:	Erwin St	I/S No:	22
AM/PM: A	M Comments	: Cumulative Plus	Project		
COUNT DA	TE:	STUDY DATE:	GRO	WTH FACTOR:	

Volume	/Lane/Sig	nal Confi	guration	ns ====									
	NOF	RTHBOUN	ID	SO	UTHBOU	ND		WES	TBOUN	ID	E.A	STBOU	ND
	LT	TH	RT	LT	TH	RT	L	T	TH	RT	LT	TH	RT
EXISTING	172	1397	7	30	2227	173	3	1	23	46	54	4	178
AMBIENT													
RELATED													Ī
PROJECT													Ī
TOTAL	172	1397	7	30	2227	173	3	1	23	46	54	4	178
LANE		2 1		, <u> </u>	↑ ♠ ↑ 2 1	\$	ֆ 1	分 个	4 T		f 分	个 _价 ′	Ŷ 1
	Phasin	g R	TOR	Phasii	ng l	RTOR	Ph	asing	F	RTOR	Phasir	ng	RTOR
SIGNAL	Perm	-	luto	Pern	n	Auto		Split		Auto	Split		Auto
				-									


N/S:	Winnetka Ave	W/E:	Brahma Dr/Calvert St	I/S No:	23
AM/PM: AM	Comments: C	umulative	Plus Project		
COUNT DATE:	ST	UDY DATE:	GROWTH	FACTOR:	

Volume	e/Lane/Sig	nal Confi	guratior	ıs <u> </u>								
	NOF	NORTHBOUND			SOUTHBOUND			WESTBOL	JND	E	ASTBOL	IND
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	186	1067	0	4	1270	181	52	23	68	47	0	44
AMBIENT												
RELATED												
PROJECT												
TOTAL	186	1067	0	4	1270	181	52	23	68	47	0	44
LANE	4 A 4	NV V	lþ d [⊥] þ	, N	个	1 I	竹 好	个	숙 ♪ ₩ 1	∮ ∰	个	1
	Phasing	g R	TOR	Phasin	ig F	RTOR	Phas	sing	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-Fi	x <n< td=""><td>one></td><td>Perm</td><td>1</td><td>OLA</td><td>Sp</td><td>lit</td><td>Auto</td><td>Spli</td><td>t</td><td>Auto</td></n<>	one>	Perm	1	OLA	Sp	lit	Auto	Spli	t	Auto


N/S:	De Soto Ave	W/E:	Oxnard St	I/S No:	24
AM/PM: AM	Comments: C	umulative	Plus Project		
COUNT DATE:	ST	UDY DATE:	GR	OWTH FACTOR:	

Volume	e/Lane/Si	gnal Confi	guration	s ====									
	NO	RTHBOUN	ID	SO	SOUTHBOUND			WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	127	1447	31	54	2271	239	241	467	62	59	168	82	
AMBIENT													
RELATED													
PROJECT													
TOTAL	127	1447	31	54	2271	239	241	467	62	59	168	82	
LANE	1	2	↑ 4 _†	N N	个	<u>}</u>	∮ ∰	个 余 行 1 1		f 分	↑ ♠ ↑ 1	1	
	Phasir	ng R	TOR	Phasii	ng l	RTOR	Phasi	ng	RTOR	Phasir	ng	RTOR	
SIGNAL	Pern	1 /	Auto	Pern	n	Auto	Perr	n	Auto	Pern	1	Auto	

N/S:	Winnetka Ave	W/E:	Oxnard St	I/S No:	25
AM/PM: AM	Comments: C	umulative	Plus Project		
COUNT DATE:	STI	JDY DATE:	GROWTH	I FACTOR:	

Volume	e/Lane/Si	gnal Conf	iguratior	ıs 									
	NO	RTHBOU	VD	SO	SOUTHBOUND			WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	52	1139	48	33	1465	231	58	260	15	153	287	69	
AMBIENT													
RELATED													
PROJECT													
TOTAL	52	1139	48	33	1465	231	58	260	15	153	287	69	
LANE	1	↑ ♠ ♠ 1	Lp 4Hp	f 分	个		η Ω	↑ ∰ ⁴	<u>}</u> ₼ ₼	1 日	↑ ☆ ſ 1	\(\frac{1}{2}\) \(\frac{1}{2}\)	
	Phasii	ng F	RTOR	Phasi	ng l	RTOR	Phas	ing	RTOR	Phasir	ng	RTOR	
SIGNAL	Pern	n /	Auto	Pern	n .	Auto	Per	m	Auto	Perm	1	Auto	

N/S:	De Soto Ave	W/E:	Burbank Bl	I/S No:	26
AM/PM: AM	Comments:	Cumulative I	Plus Project		
COUNT DATE	E: ST	TUDY DATE:	GRO	OWTH FACTOR:	

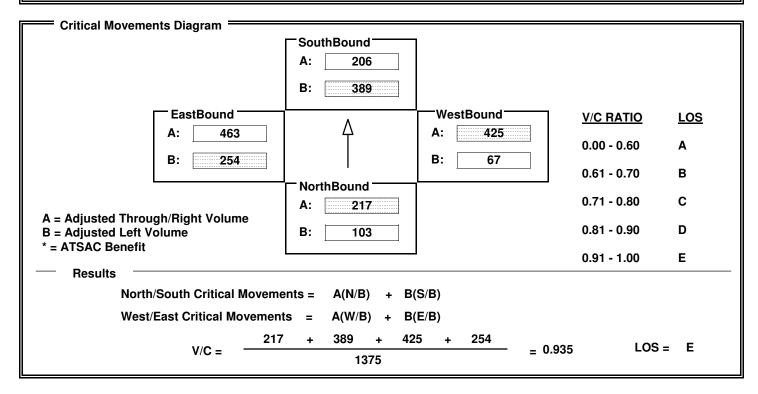
ronamo		gnal Confi			UTUBOU	ND L	- W	FOTROU	IND L		OTDOU	ND L
		RTHBOUN			UTHBOU			WESTBOUND			STBOU	
EXISTING	LT 242	тн 1633	RT O	LT O	тн 1608	RT 691	LT O	тн 0	RT 0	166	тн О	129
AMBIENT		1000			1000	031				100		123
RELATED												
PROJECT												
TOTAL	242	1633	0	0	1608	691	0	0	0	166	0	129
LANE		↑ ♠ ♠ 3		ф	↑ ♠ ↑ 2 1		ф []	个 命 ′	τ̂ _β ιδ 4πδ	\$\frac{1}{4} \frac{2}{4}	Ŷ ♠ ′	2
	Phasir	ng R	TOR	Phasi	ng I	RTOR	Phasi	ng	RTOR	Phasin	g	RTOR
SIGNAL	Perm	1 <r< td=""><td>one></td><td>Pern</td><td>n</td><td>Auto</td><td></td><td></td><td></td><td>Split</td><td></td><td>Auto</td></r<>	one>	Pern	n	Auto				Split		Auto

Critical Movements Diagram				
, and the second	SouthBound A: 766 B: 0			
EastBound	<u> </u>	WestBound	V/C RATIO	<u>LOS</u>
A: 71		A: 0	0.00 - 0.60	Α
B: 91	North Bound	B: 0	0.61 - 0.70	В
	NorthBound A: 544		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 242		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = $B(N/B) + A($	S/B)		
West/East Critical Movemen	ts = A(W/B) + B(E/B)		
V/C = 242	2 + 766 + 0 1500	+ 91 = 0.733	LOS =	С

N/S:	De Soto Ave	W/E:	101 WB Ramps	I/S No:	27
AM/PM: AM	Comments:	Cumulative Plu	s Project		
COUNT DAT	E:	STUDY DATE:	GROWT	H FACTOR:	

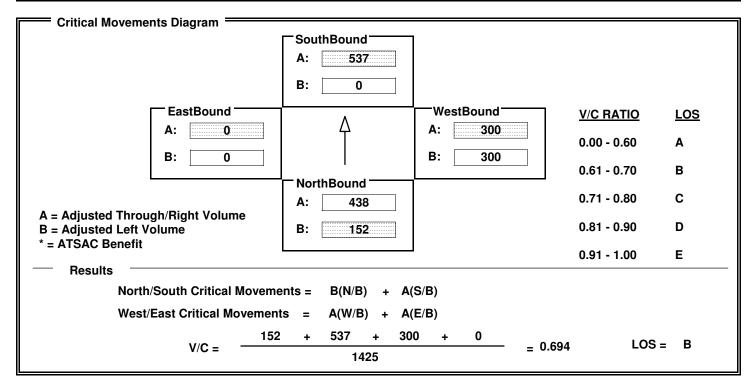
Volume		gnal Confi											
	NO	RTHBOUN	ID	SC	UTHBOU	ND	WE	WESTBOUND			FASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	192	1481	0	0	1215	600	157	5	651	0	0	0	
AMBIENT													
RELATED													
PROJECT													
TOTAL	192	1481	0	0	1215	600	157	5	651	0	0	0	
LANE	փ ∰ 1	↑ ♠ ♠ 2	Γ Φ Φ ΤΦ	ф ф 	수 点 分 4	1 I	⁴ η ^Δ μ ⁴	↑ ♠ ′ 1	↑ ↑ ↔ 1	ф ф 	↑ ♣ ⁴	LA CTA	
	Phasir	ng R	TOR	Phasi	ng l	RTOR	Phasin	ıg	RTOR	Phasi	ng	RTOR	
SIGNAL	Prot-F	ix		Perr	n	Auto	Split		Auto				

Critical Movements Diagram				
	A: 600 B: 0			
EastBound —	Λ	WestBound	V/C RATIO	<u>LOS</u>
A: 0		A: 328 B: 157	0.00 - 0.60	A
] ' .	5. 107	0.61 - 0.70	В
A A !:	NorthBound A: 741		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 192		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = $B(N/B) + A($	(S/B)		
West/East Critical Movemen	ts = A(W/B) + A(E/B)		
V/C 192	· + 600 + 32	8 + 0 = 0.786	LOS =	С
V/C =	1425	= 0.760	200 -	J

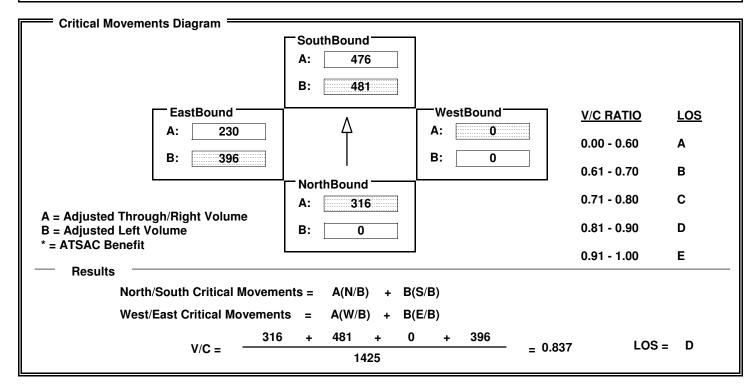

N/S:	De Soto Ave	W/E:	101 EB Ramps	I/S No:	28
AM/PM: AM	Comments: C	umulative	Plus Project		
COUNT DATE:	ST	UDY DATE:	GROWT	TH FACTOR:	

Volume	e/Lane/Siç	gnal Conf	iguration	ıs ====								
	NO	RTHBOU	ND	SO	UTHBOL	IND	W	ESTBOU	ND	EA	STBOU	ND
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	0	854	129	1007	421	0	0	0	0	734	5	439
AMBIENT												
RELATED												
PROJECT												
TOTAL	0	854	129	1007	421	0	0	0	0	734	5	439
LANE		↑ ♠ ↑ 3	1	, N	Ŷ ∯ Ý 2	<u></u>	4 £	↑ ♣ ⁴	Ŷ \	1 1	↑ ☆ 1	<u>1</u>
	Phasir	ng F	RTOR	Phasin	ng	RTOR	Phasi	ng	RTOR	Phasin	g	RTOR
SIGNAL	Perm	1 <	none>	Prot-F	ix <	none>				Split		Auto

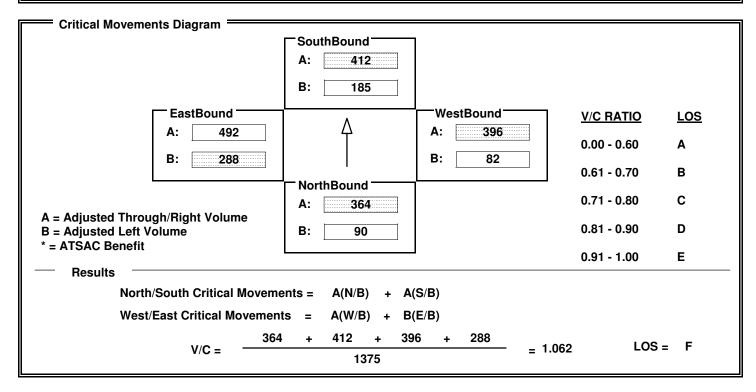
Critical Movements Diagram				
	SouthBound A: 211 B: 554			
EastBound —	Λ	WestBound	V/C RATIO	<u>LOS</u>
A: 439 B: 370		A: 0 B: 0	0.00 - 0.60	A
B. 370	<u></u> '	J. 0	0.61 - 0.70	В
A Adiiyated Thyeyeb/Dight Volume	NorthBound A: 285		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 0		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = A(N/B) + B(S/B)		
West/East Critical Movemen	ts = $A(W/B)$ + $A($	E/B)		
285	+ 554 + 0	+ 439 = 0.897	LOS =	D
V/C =	1425	= 0.097	230 -	2


N/S:	De Soto Ave	W/E:	Ventura BI	I/S No:	29
AM/PM: AM	Comments: C	umulative	Plus Project		
COUNT DATE:	STI	UDY DATE:	GROWTH	H FACTOR:	

— Volume	/Lana/Siar	al Cantie	uration	. —								
Volume	e/Lane/Sigr	iai Comi	juration	S								
	NOR	THBOUN	D	SOL	JTHBOU	ND	V	/ESTBOUN	ND	E/	STBOUN	D
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	103	287	146	708	206	416	67	1276	450	254	1323	67
AMBIENT												
RELATED												
PROJECT												
TOTAL	103	287	146	708	206	416	67	1276	450	254	1323	67
LANE	析 分 分	↑ ∯ ∳ 1	ly d√ly	φ φ Δ 2	↑ ☆ 乍 1	†	ή <u>φ</u>	↑ ∰ ↑ 3	\$	f 分	↑ ♠ ♠ 2 1	l⊅ dtþ
	Phasing	g Ri	ΓOR	Phasin	ıg l	RTOR	Phas	ing I	RTOR	Phasir	ng I	RTOR
SIGNAL	Split	A	uto	Split		OLA	Per	m	OLA	Prot-F	ix	Auto
									<u>.</u>			


N/S:	Winnetka Ave	W/E:	101 WB Ramps	I/S No:	30
AM/PM: AM	Comments:	Cumulative Plu	us Project		
COUNT DATE:		STUDY DATE:	GROW	TH FACTOR:	

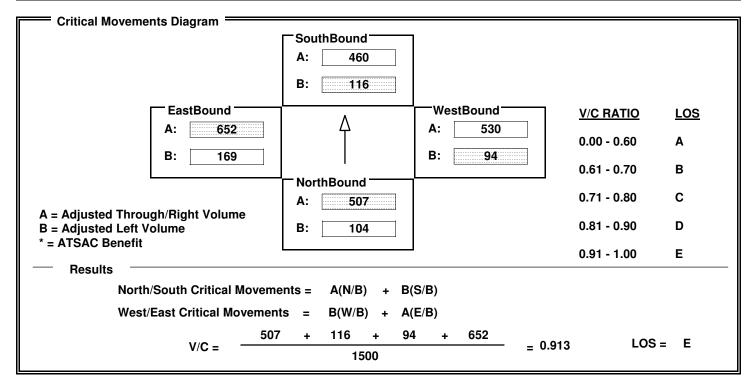
	NO	RTHBOU	ND.	SO	SOUTHBOUND			STBOU	ND	EASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	152	875	0	0	1074	466	360	2	538	0	0	0
AMBIENT												
RELATED												
PROJECT												
TOTAL	152	875	0	0	1074	466	360	2	538	0	0	0
LANE	. 1.	↑ ♣ ♠	l⊅ dtþ		个	1	ή ή ^Δ	↑ ☆ ′ 1	1	\$ £	↑ ♣ ⁴	<u></u>
	Phasir	ng F	RTOR	Phasi	ng	RTOR	Phasin	g	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	ix <r< td=""><td>none></td><td>Pern</td><td>n</td><td>Auto</td><td>Split</td><td></td><td>Auto</td><td></td><td></td><td></td></r<>	none>	Pern	n	Auto	Split		Auto			


N/S:	Winnetka A	Ave W/E:	101 EB Ramps	I/S No: 31					
AM/PM: AM Comments: Cumulative Plus Project									
COUN	T DATE:	STUDY DATE:	GROV	VTH FACTOR:					

Volume	/Lane/Sig	ınal Conf	iguration	s ====								
	NO	RTHBOU	ND	so	UTHBOU	IND	W	ESTBOU	ND	EA	STBOU	ND
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	0	631	211	481	952	0	0	0	0	396	0	230
AMBIENT												
RELATED												
PROJECT												
TOTAL	0	631	211	481	952	0	0	0	0	396	0	230
LANE	4 £	↑ 命 ф 1 1		, ,	↑ ♠ ↑ 2	↑ ↑ ⊕	ф [个 	<u>₽</u> № ₩	ή _ψ ^Δ	^ <u></u>	<u>}</u>
	Phasin	ıg F	RTOR	Phasir	ng	RTOR	Phasi	ng	RTOR	Phasin	g	RTOR
SIGNAL	Perm	l <	none>	Prot-F	ix <	none>				Split		Auto

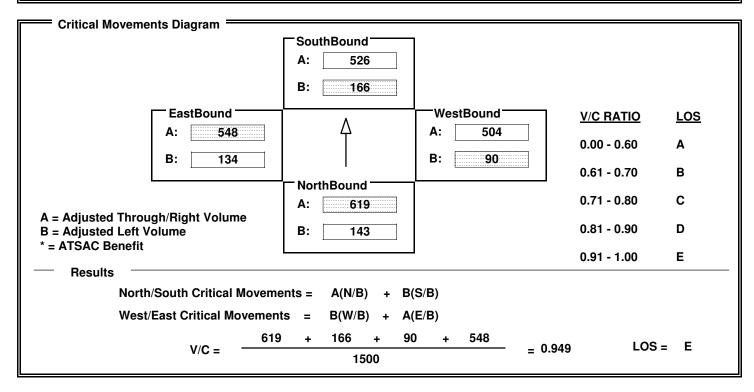
N/S:	Winnetka Ave	W/E:	Ventura BI	I/S No:	32
AM/PM: A	M Comments	: Cumulative Pl	us Project		
COUNT DA	TE:	STUDY DATE:	GROW	/TH FACTOR:	

	/Lane/Sig			_	LITUDOL	L L	14/1	TOTROUI	up L		OTDOUL	ın L
		RTHBOUN			UTHBOL			STBOU			ASTBOUN	
EXISTING	1T 90	тн 328	8T 36	337	TH 412	8T 329	82	тн 792	RT 228	288	TH 1393	84
AMBIENT		0_0									1000	
RELATED												
PROJECT												
TOTAL	90	328	36	337	412	329	82	792	228	288	1393	84
LANE	1 A		lγ (Ψ	φ β	个 余 行 1	1	<u></u>	↑ ∰ ↑ 2	1 I	竹 分	↑ ♠ ↑ 2 1	\$
	Phasin	g R	TOR	Phasir	ng	RTOR	Phasir	ng l	RTOR	Phasir	ng	RTOR
SIGNAL	Split	-	luto	Split	t	OLA	Perm	1	OLA	Prot-F	ix	Auto


N/S:	De Soto Ave	W/E:	Saticoy St	I/S No:	1
AM/PM: PM	Comments: C	umulative	Plus Project		
COUNT DATE:	ST	UDY DATE:	GROWTH	H FACTOR:	

── Volume	/Lana/Si	gnal Conf	iauration										
Volume	Lane/Si	giiai Coili	iguration	15									
	NO	RTHBOU	ND	SOUTHBOUND			W	WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	101	1337	140	127	1104	146	101	890	105	140	1174	78	
AMBIENT													
RELATED													
PROJECT													
TOTAL	404	4007	440	407	4404	4.40	404	000	105	440	4474	70	
TOTAL	101	1337	140	127	1104	146	101	890	105	140	1174	78	
LANE	4 A	☆ ☆ ☆ ☆ 2 1	; rÞ 4πÞ	ф ф 1	个		∮ ∰ 1	个		f 分	个	\$	
	Phasir	ng F	RTOR	Phasir	ng l	RTOR	Phasi	ng	RTOR	Phasir	ng	RTOR	
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto	Pern	n	Auto	Prot-F	ix	Auto	
							-						

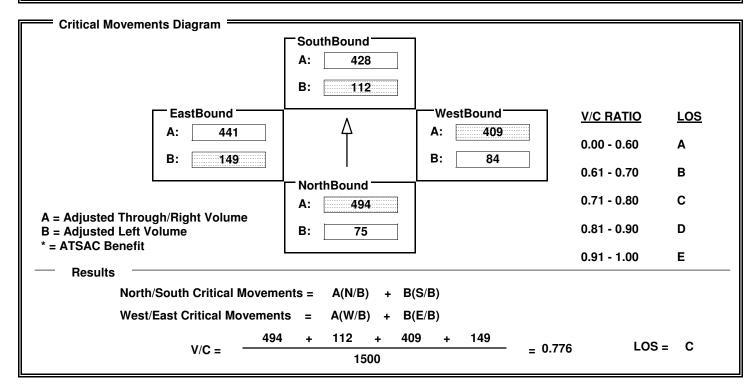
Critical Movements Diagram				
	SouthBound A: 625 B: 127			
EastBound —		WestBound	V/C RATIO	LOS
A: 626 B: 140		A: 498 B: 101	0.00 - 0.60	A
	<u> </u> '		0.61 - 0.70	В
A Adjusted Through/Dight Volume	NorthBound A: 492		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 101		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results			0.91 - 1.00	
North/South Critical Moveme	ents = $B(N/B) + A($	S/B)		
West/East Critical Movemen	ts = B(W/B) + A((E/B)		
V/C = 101		1 + 626 = 1.057	LOS =	F
., 0 =	1375			


N/S:		Mason Ave	W/E:	Saticoy St	I/S No:	2
AM/PI	M: PM	Commer	nts: Cumulative Plu	ıs Project		
COU	NT DATE:		STUDY DATE:	GRO	WTH FACTOR:	

Volume	e/Lane/Sig	anal Confi	auration	. ===										
Volume	e/Lane/Siç	gilai Colli	guratioi	15										
	NO	RTHBOU	ND	SO	SOUTHBOUND			WESTBOUND			E/	EASTBOUND		
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT	
EXISTING	104	931	83	116	791	128		94	979	81	169	1192	112	
AMBIENT														
RELATED														
PROJECT														
					1		, . 1 F		T			T		
TOTAL	104	931	83	116	791	128		94	979	81	169	1192	112	
LANE	ψ ψ ·	↑ ♠ ₲ 1 1	lþ (√lþ		个 命 行 1 1	ф ф ф		ή _φ ·	个 _余 行		f 分	个 命 保 1 1	, Ip (Hp	
	Phasir	ng F	RTOR	Phasir	ng	RTOR		Phasir	ng	RTOR	Phasir	ng	RTOR	
SIGNAL	Perm	1	Auto	Perm	1	Auto		Perm	1	Auto	Perm	1	Auto	

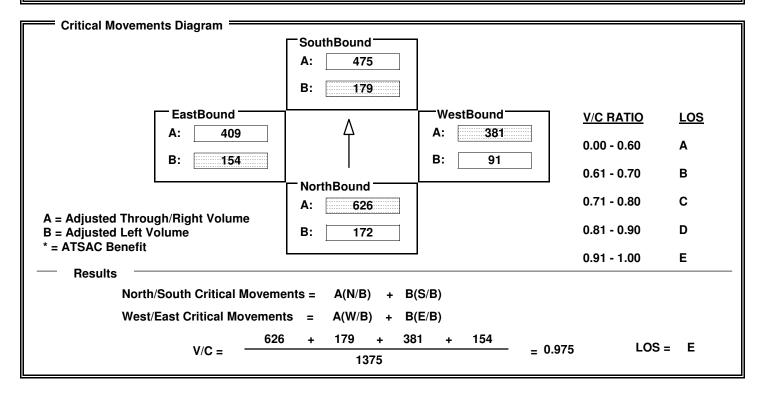
N/S:	Winnetka Ave	W/E:	Saticoy St	I/S No:	3
AM/PM: PN	Comments	: Cumulative Plus	Project		
COUNT DAT	E:	STUDY DATE:	GROV	VTH FACTOR:	

Volume	e/Lane/Sig	gnal Conf	iguration	ıs ====								
	NO	RTHBOU	ND	SOUTHBOUND			WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	143	1115	123	166	1051	163	90	850	157	134	968	127
AMBIENT												
RELATED												
PROJECT												
TOTAL	143	1115	123	166	1051	163	90	850	157	134	968	127
LANE	1	↑ ♠ ф 1 1		, N	↑ ♠ ↑ 2	\$	∮ ∰	个		1	个 命 仓 1 1	1
	Phasir	ng F	RTOR	Phasi	ng l	RTOR	Phas	ing	RTOR	Phasir	ng	RTOR
SIGNAL	Perm	ו	Auto	Pern	n	Auto	Per	m	Auto	Perm	1	Auto

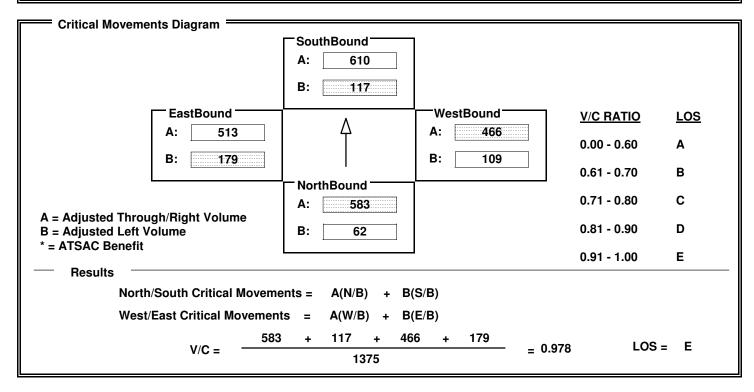

N/S:	De Soto Ave	W/E:	Sherman Way	I/S No:	4
AM/PM: PM	Comments	: Cumulative Plu	s Project		
COUNT DAT	E:	STUDY DATE:	GROWT	H FACTOR:	

Volume	e/Lane/Sig	gnal Conf	iguration	ıs ====									
	NO	RTHBOU	ND	SOUTHBOUND				WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT	LT		RT	LT	TH	RT	
EXISTING	121	1754	297	110	1051	162	17	8 106	5 139	186	1818	153	
AMBIENT													
RELATED													
PROJECT													
TOTAL	121	1754	297	110	1051	162	17	8 106	5 139	186	1818	153	
LANE		分 份 份 2		竹 矿	个	\$	⁴ η ⁴ / ₄	2	1	年 1	↑ ♣ ⁴	1	
SIGNAL	Phasir Perm		RTOR Auto	Phasir Perm		RTOR Auto		asing ot-Fix	RTOR Auto	Phasi		RTOR Auto	

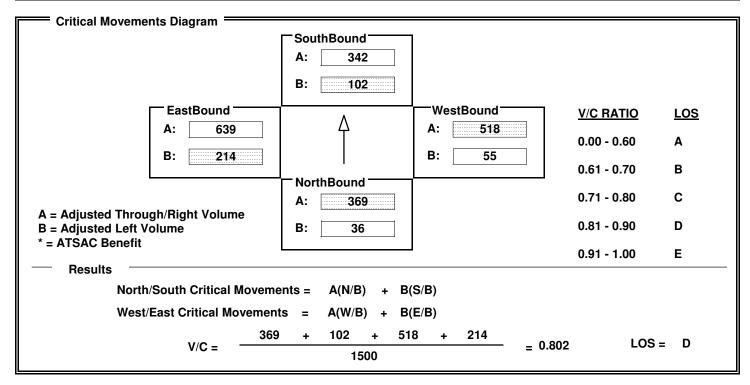
Critical Movements Diagram				
Ontiour movements Bragiani	SouthBound A: 607 B: 110			
EastBound —	<u> </u>	WestBound	V/C RATIO	<u>LOS</u>
A: 657 B: 186		A: 401 B: 178	0.00 - 0.60	A
			0.61 - 0.70	В
A Adjusted Through/Dight Volume	NorthBound A: 684		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 121		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results		(a.a.)		
North/South Critical Moveme	ents = $A(N/B) + B($	(S/B)		
West/East Critical Movemen	ts = B(W/B) + A((E/B)		
684	+ 110 + 17	8 + 657 = 1.143	LOS =	F
V/C =	1425	= 1.143	230 -	-


N/S:	Mason A	/e W/E:	Sher	man Way	I/S No:	5
AM/PN	M: PM	Comments: Cumulative	Plus Project			
COUN	IT DATE:	STUDY DATE:		GROWTH F	ACTOR:	

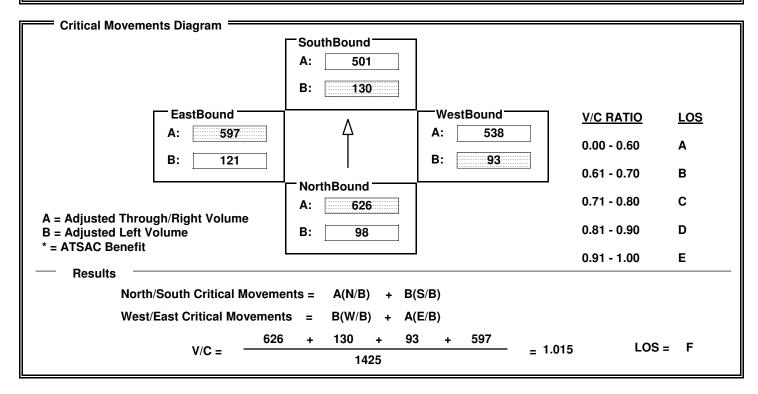
Volume	/Lane/Sig	nal Confi	guration	s									
	NOF	RTHBOUN	ID	SOUTHBOUND			W	WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	75	922	65	112	712	143	84	1139	89	149	1265	57	
AMBIENT													
RELATED													
PROJECT													
TOTAL	75	922	65	112	712	143	84	1139	89	149	1265	57	
LANE	1 1		β	ψ ψ ·	个 命 仓 1 1	<u>}</u>	∮ ∰	个	\$ F\$ 4T\$	竹 分	수 슈 숙 2 1	\$ F 4T	
	Phasin	g R	TOR	Phasir	ng l	RTOR	Phasi	ng I	RTOR	Phasir	ng	RTOR	
SIGNAL	Perm	-	Auto	Perm	1	Auto	Perr	n .	Auto	Pern	1	Auto	


N/S:	Winnetka Ave	W/E:	Sherman Way	I/S No:	6
AM/PM: PM	Comments	: Cumulative Plu	s Project		
COUNT DAT	TE:	STUDY DATE:	GROWI	TH FACTOR:	

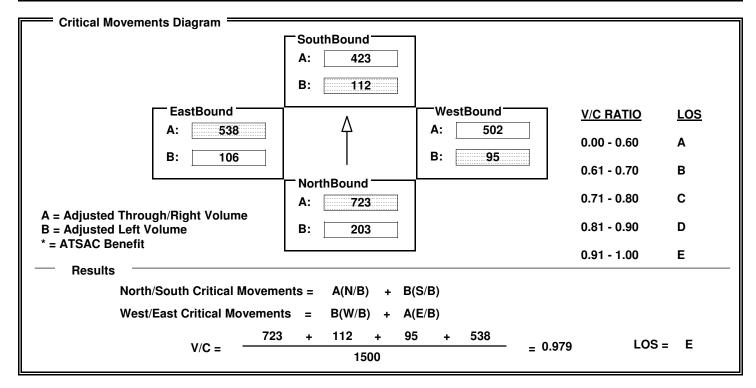
── Volume	/Lana/Si	gnal Conf	auration	. ===								
Volume	e/Lane/Si	gilai Colli	iguratioi	13								
	NO	RTHBOU	VD.	SO	UTHBOU	ND	W	ESTBOU	ND	E	STBOUN	ID
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	172	1156	96	179	949	156	91	987	156	154	1115	111
AMBIENT												
RELATED												
PROJECT												
TOTAL	172	1156	96	179	949	156	91	987	156	154	1115	111
LANE	∮ ∱	수 ☆ ☆ 1 1	_ l⊅ 4η⊅	h 分	수 命 수 2	<u>\</u>	∮ ∳ 1 ∥	↑ ♠ ↑2 1	<u>}</u>	f 分	수 _最 年 2 1	; r> 4T>
	Phasii	ng F	RTOR	Phasir	ng	RTOR	Phasi	ng	RTOR	Phasir	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto	Prot-	Fix	Auto	Prot-F	ix	Auto


N/S:	De Soto Ave	W/E:	Vanowen St	I/S No:	7
AM/PM: P	Comments	s: Cumulative Plus	Project		
COUNT DAT	ΓE:	STUDY DATE:	GROV	VTH FACTOR:	

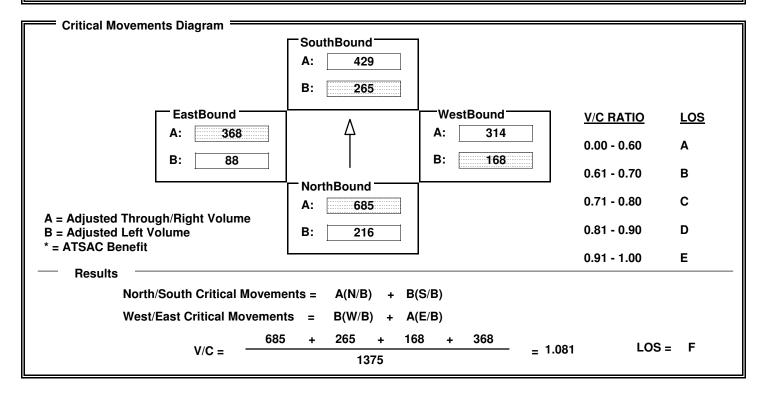
Volume	/Lane/Sig	nal Confi	iguration	ıs ====									
	NO	RTHBOU	ND	SO	UTHBOU	ND		WE	STBOU	ND	E	ASTBOU	ND
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	62	1624	124	117	999	220	1	09	931	143	179	1434	104
AMBIENT													
RELATED													
PROJECT													
TOTAL	62	1624	124	117	999	220	1	09	931	143	179	1434	104
LANE		↑ ∰ ∯ 2 1	_ t> 4±>		↑ ♠ ↑ 1 1	ф ф ф	փ 1	N	Ŷ ∰ ⁴	1	ψψ1	2	1
	Phasin	g F	RTOR	Phasir	ig l	RTOR	Р	hasin	g	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto	P	rot-F	ix	Auto	Prot-l	Fix	Auto


N/S:	Mason Ave	W/E:	Vanowen St	I/S No:	8					
AM/PM: PM	Comments: Cumulative Plus Project									
COUNT DATE:	STU	JDY DATE:	GRO	OWTH FACTOR:						

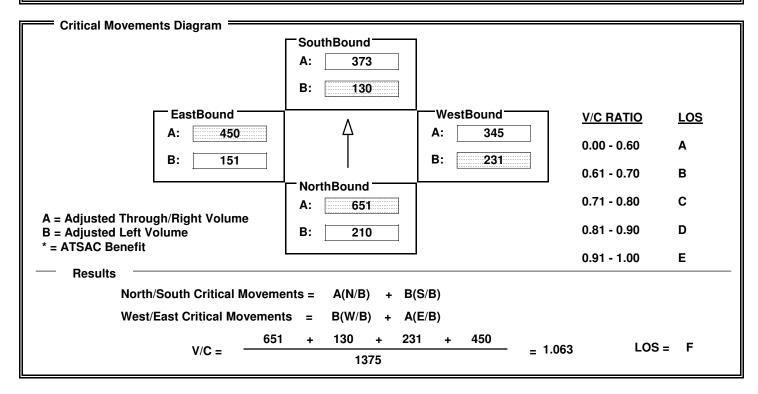
── Volume	e/Lane/Sig	anal Canfi	auration	. ===									
Volume	e/Lane/Sig	Jilai Collii	guratioi	15									
	NO	RTHBOUN	ND	SO	UTHBOU	ND		W	ESTBOU	ND	E/	ASTBOUN	D
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	36	693	45	102	546	138		55	944	91	214	1212	65
AMBIENT													
RELATED													
PROJECT													
						,						1	
TOTAL	36	693	45	102	546	138		55	944	91	214	1212	65
LANE	4 A	↑ ☆ ţ	lp (41)y	句 分	个		փ 1	₽ 	个	<u></u>	f 分	个 命 句 1 1	, r> 4 _T >
	Phasin	ng F	RTOR	Phasii	ng	RTOR	F	Phasii	ng	RTOR	Phasir	ng	RTOR
SIGNAL	Perm	1 /	Auto	Pern	n	Auto		Pern	n	Auto	Perm	1	Auto


N/S:	Winnetka Ave	W/E:	Vanowen St	I/S No:	9						
AM/PM: PM	M Comments: Cumulative Plus Project										
COUNT DATE:	STI	JDY DATE:	GROWTH	FACTOR:							

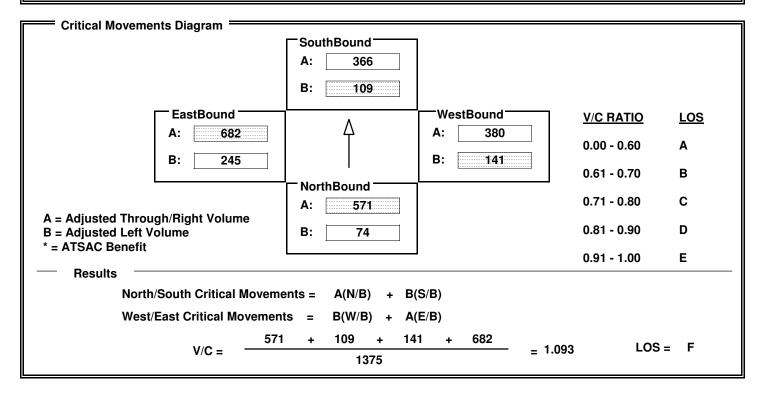
- Volume	/Lana/Si	gnal Conf	iguration	. ===								
Volume	E/Lane/Si	gilai Colli	iguratioi	15								
	NO	RTHBOU	ND	SO	UTHBOU	ND	W	ESTBOU	ND	E/	ASTBOUN	ID
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	98	1149	103	130	908	94	93	955	120	121	1110	84
AMBIENT												
RELATED												
PROJECT												
TOTAL	98	1149	103	130	908	94	93	955	120	121	1110	84
LANE	ф ф 1	个 命 句 1 1 1	; r> 4 _T >	ф 分 1	个 命 行 1 1	\$	η ₍)	个	<u>}</u>	h 分	个 _命 仓 1 1	, t _p _d t _p
	Phasi	ng F	RTOR	Phasir	ng l	RTOR	Phasi	ng	RTOR	Phasir	ng	RTOR
SIGNAL	Prot-F	Fix	Auto	Prot-F	ix	Auto	Peri	n	Auto	Perm	n	Auto


N/S:	Shoup A	ve W/E:	Vio	ctory BI	I/S No:	10						
AM/PI	AM/PM: PM Comments: Cumulative Plus Project											
COU	NT DATE:	STUDY DATE	i:	GROWTH F	ACTOR:							

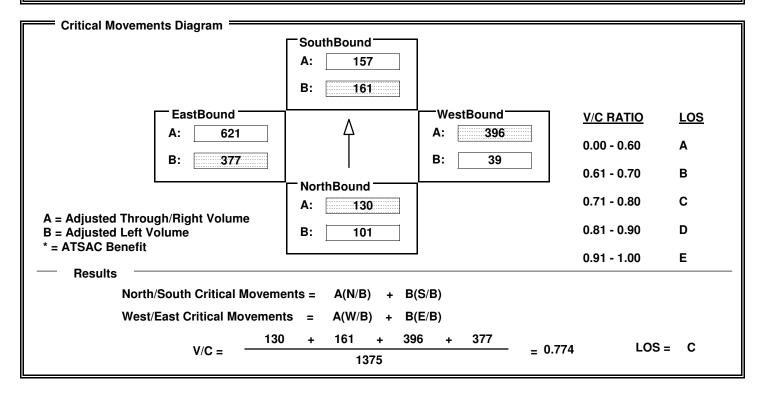
Volume	e/Lane/Sig	gnal Conf	iguration	ıs								
	NO	RTHBOU	ND	SO	UTHBOL	IND	V	/ESTBOU	ND	E/	ASTBOUN	JD
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	203	1445	117	112	749	96	95	1004	166	106	939	136
AMBIENT												
RELATED												
PROJECT												
TOTAL	203	1445	117	112	749	96	95	1004	166	106	939	136
LANE	. N.	☆ ☆ ☆	1	N N	个			↑ ∰ ↑ 2	<u>}</u>	f 分	个 命 仓 1 1	1
	Phasir	ng F	RTOR	Phasir	ng	RTOR	Phas	ing l	RTOR	Phasir	ng	RTOR
SIGNAL	Perm	1	Auto	Perm	n	Auto	Per	m	Auto	Pern	1	Auto


N/S:	Topanga Car	yon Bl W/E:	Victory BI	I/S No: 11
AM/PM:	PM	Comments: Cumulative Plu	s Project	
COUNT	DATE:	STUDY DATE:	GROWT	H FACTOR:

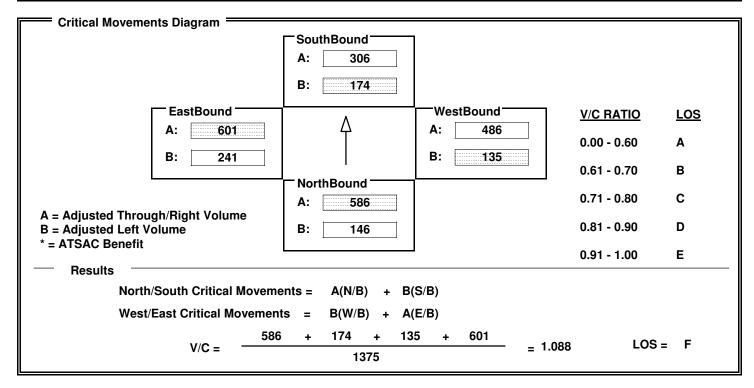
Volume	/I ang/Si	gnal Conf	iauration	. = =								
Volume	s/ Larie/ Si	giiai Ooiii	iguration	13								
	NO	RTHBOU	ND	SO	UTHBOU	ND	W	ESTBOU	ND	EA	STBOUN	ID
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	216	1677	378	265	1161	127	306	943	255	160	921	183
AMBIENT												
RELATED												
PROJECT												
TOTAL	016	1677	270	065	1161	107	206	040	OFF	160	001	100
TOTAL	216	1677	378	265	1161	127	306	943	255	160	921	183
LANE	♠ ♣	☆ ☆ ☆ ☆ 2 1	; rÞ 4πÞ	h 分	↑ ♠ ↑ 2 1	<u> </u>	∮	3	<u>}</u>	V	↑ ∰ ↑ 2 1	
	Phasii	ng F	RTOR	Phasi	ng l	RTOR	Phasi	ng	RTOR	Phasir	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto	Prot-l	Fix	OLA	Prot-F	ix	Auto


N/S:	Canoga Ave	W/E:	Victory BI	I/S No:	12				
AM/PM: PM Comments: Cumulative Plus Project									
COUNT DAT	E: S	TUDY DATE:	GROW	TH FACTOR:					

Volume	/I ang/Si	gnal Conf	iguration	. = ==								
Volume	s/Lane/Si	gilai Colli	iguratioi	13								
	NO	RTHBOU	ND	SO	UTHBOU	ND	W	/ESTBOU	ND	E/	ASTBOUN	ID.
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	210	1569	384	130	966	152	231	1169	211	151	1350	230
AMBIENT												
RELATED												
PROJECT												
TOTAL	210	1569	384	130	966	152	231	1169	211	151	1350	230
IOIAL	210	1509	304	130	900	152	231	1109	211	131	1330	230
LANE	♠ ♠	↑ ♠ ♠ 2 1	; rÞ 4⊤Þ	句 分 1	수 슈 숙 2 1	<u>}</u>	ἡ ∯ 1	↑ ♠ ↑ 3 1	<u></u>	f 分 1	↑ ∰ ↑ 3	1 I
	Phasii	ng F	RTOR	Phasii	ng	RTOR	Phas	ing l	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto	Prot-	Fix	OLA	Prot-F	ix	OLA
							-			·		


N/S:	De Soto Ave	W/E:	Victory BI	I/S No:	13
AM/PM: PM	Comments: C	umulative	Plus Project		
COUNT DATE:	ST	UDY DATE:	GROW	TH FACTOR:	

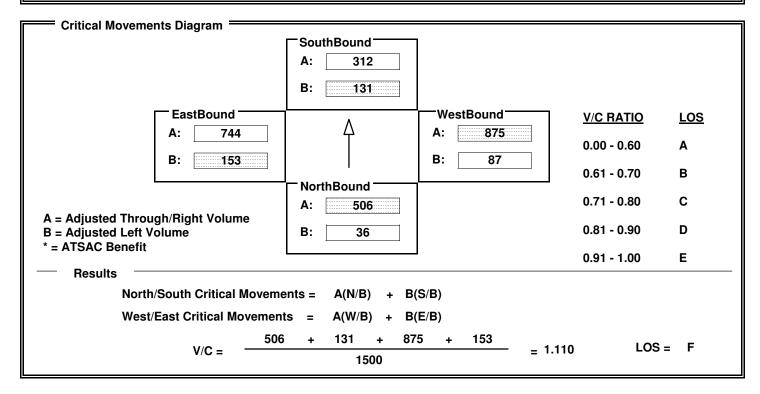
── Volume	/Lana/Si	gnal Conf	iguration	. ===									
Volume	5/Lanc/Si	gilai Colli	iguratioi	13									
	NO	RTHBOU	ND	SO	UTHBOU	ND	ı I	WE	STBOUN	ND.	E/	ASTBOUN	ID
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	74	1256	457	109	901	197		256	1140	119	446	1910	135
AMBIENT													
RELATED			_										
PROJECT													
TOTAL	74	1256	457	109	901	197		256	1140	119	446	1910	135
LANE	∮ ₽	个	; r> 4 _T >		个	<u> </u>			↑ ☆ 兌 3	1 1	∮ ∯	↑ ♠ ↑ 2 1	
	Phasi	ng I	RTOR	Phasir	ng	RTOR		Phasin	ng F	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	ix .	Auto	Prot-F	ix	Auto		Prot-F	ix <	none>	Prot-F	Fix	Auto


N/S:	Mason Ave	W/E:	Victory BI	I/S No:	14
AM/PM: PM	Comments: C	umulative Plus	Project		
COUNT DATE:	STU	JDY DATE:	GROWT	H FACTOR:	

- Valuma	/Long/Sig	nal Canfia	urotion	. —								
Volullie	e/Lane/Sig	nai Coning	urations	5								
	NOF	THBOUNI		SOL	JTHBOU	ND	W	ESTBOUN	ND	EA	STBOUN	D
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	101	177	82	161	157	242	39	1188	187	377	1863	134
AMBIENT												
RELATED												
PROJECT												
TOTAL	101	177	82	161	157	242	39	1188	187	377	1863	134
LANE	h 分分分 1 1 1		lþ (∏Þ	4 & 4		2	∯ ∰ 1	3	1	N N	↑ ♠ ♠ 3	_ p ←p
	Phasing	g RT	OR	Phasin	g l	RTOR	Phasi	ng F	RTOR	Phasir	ng I	RTOR
SIGNAL	Prot-Fi	x A	uto	Prot-Fi	X <	none>	Prot-l	Fix <	none>	Prot-F	ix	Auto

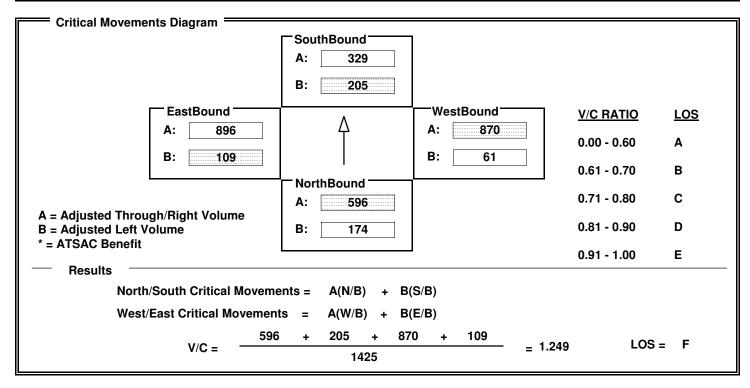
N/S:	Winnetka	ı Ave W/E:	Vi	ctory BI	I/S No:	15						
AM/P	AM/PM: PM Comments: Cumulative Plus Project											
COU	NT DATE:	STUDY DAT	E:	GROWTH F	ACTOR:							

Volume	/Lane/Sig	nal Conf	iguratior	ıs ——								
	NO	RTHBOU	ND	SO	UTHBOL	IND	W	ESTBOUN	ND	E/	ASTBOUN	D
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	146	1030	141	174	792	127	135	1313	145	241	1619	184
AMBIENT												
RELATED												
PROJECT												
TOTAL	146	1030	141	174	792	127	135	1313	145	241	1619	184
LANE	1 2	↑ ♠ ↑ 1 1	, IÞ 4∏Þ	N	个 _价 4 2 1	<u></u>	∯ ∰ 1	수 슈 수 2 1	<u>}</u>	∮ ∱	↑ ♣ ↑ 2 1	, r 4t
	Phasin	g F	RTOR	Phasii	ng	RTOR	Phasi	ng F	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto	Prot-F	Fix	Auto	Prot-F	ix	Auto

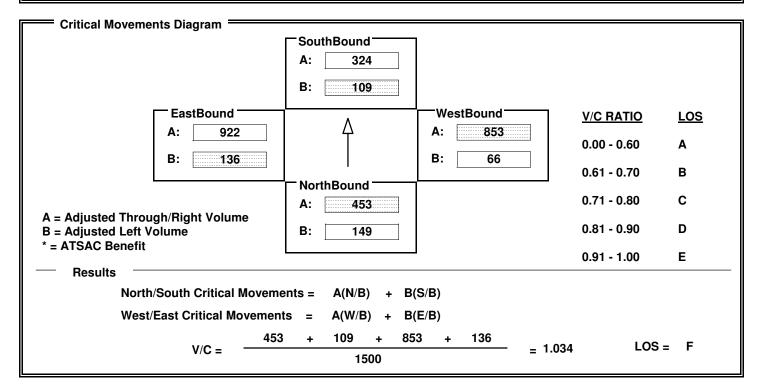

N/S:	Topha	ım St W	/E:	Victory BI	I/S No:	16
AM/PI	M: PM	Comments: Cumu	ative F	Plus Project		
COU	NT DATE:	STUDY [OATE:		GROWTH FACTOR:	

Volume	e/Lane/Sig	ınal Conf	iguration	ıs ====									
		,	9										
	NO	RTHBOU	ND	SO	UTHBOL	IND	ı I	W	ESTBOU	ND	E	ASTBOUN	ND.
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	316	0	6	0	0	0		0	1430	0	0	1712	356
AMBIENT													
RELATED													
PROJECT													
TOTAL	316	0	6	0	0	0		0	1430	0	0	1712	356
LANE	♠ ♠ ⁴		_ f> (†	ф 	个 _命	↑		∮	↑ ♠ ↑ 2	↑ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ф 	수 🚓 숙 2	1 I
	Phasin	ıg F	RTOR	Phasi	ng	RTOR		Phasir	ng	RTOR	Phas	ing	RTOR
SIGNAL	Prot-F	ix <r< td=""><td>none></td><td>Pern</td><td>n</td><td>Auto</td><td></td><td>Pern</td><td>1 <</td><td>none></td><td>Per</td><td>m</td><td>OLA</td></r<>	none>	Pern	n	Auto		Pern	1 <	none>	Per	m	OLA

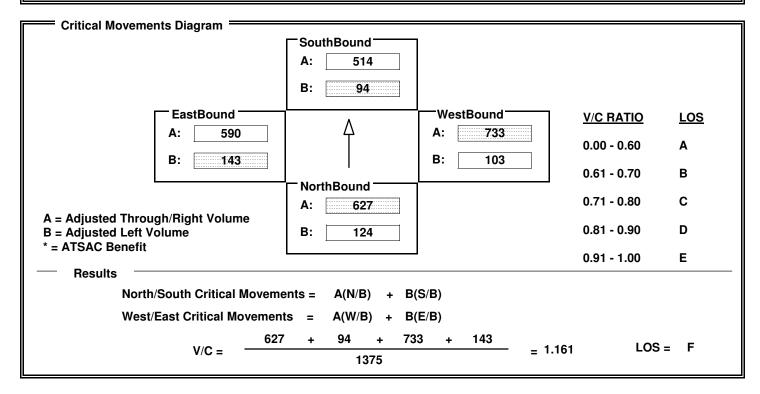
Critical Movements Diagram				
	SouthBound A: 0 B: 0			
EastBound —	1 ^	WestBound	V/C RATIO	LOS
A: 856 B: 0		A: 715 B: 0	0.00 - 0.60	A
] ' .		0.61 - 0.70	В
A Adimand Thursday (Birda Valuma	NorthBound A: 6		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 316		0.81 - 0.90	D
* = ATSAC Benefit	<u> </u>		0.91 - 1.00	E
North/South Critical Movement	onto - R/N/R) · A/	(C/P)		
North/South Critical Moveme	ents = $B(N/B) + A($	(3/6)		
West/East Critical Movemen	ts = B(W/B) + A((E/B)		
316	6 + 0 + 0	+ 856 = 0.822	LOS =	D
V/C =	1425			


N/S:	Corbin Ave	W/E:	Victory BI	I/S No:	17							
AM/PM: PM	AM/PM: PM Comments: Cumulative Plus Project											
COUNT DATE	: ST	UDY DATE:	GRO	WTH FACTOR:								

Volume	/Lane/Sig	gnal Conf	iguration	ıs 								
	NO	RTHBOU	ND	SO	UTHBOU	ND	V	/ESTBOUI	ND	E/	ASTBOUN	1D
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	36	867	144	131	464	159	87	1384	366	153	1456	31
AMBIENT												
RELATED												
PROJECT												
TOTAL	36	867	144	131	464	159	87	1384	366	153	1456	31
LANE	∮ ∰ 1	↑ ♠ ↑ 1 1	<u>, </u>	竹 分	↑ ♠ ↑ 1 1		ή <u>β</u>	个		f 分 1	1 1 1	
	Phasir	ng I	RTOR	Phasii	ng l	RTOR	Phas	ing	RTOR	Phasir	ng	RTOR
SIGNAL	Perm	1	Auto	Pern	1	Auto	Per	m	Auto	Pern	1	Auto
									<u>,</u>			


N/S:	Tan	npa Ave	W/E:	Victory B	I	I/S No:	18
AM/PI	M: PM	Comments: C	umulative F	Plus Project			
cou	NT DATE:	ST	UDY DATE:		GROWTH FA	CTOR:	

Volume	/I ana/Si	gnal Conf	iguration										
Volume	5/ Lanc/Si	gilai Colli	iguration	13									
	NO	RTHBOU	ND	SO	UTHBOL	IND	Ĺ	WI	STBOU	VD	E	STBOUN	ID
	LT	TH	RT	LT	TH	RT	-	LT	TH	RT	LT	TH	RT
EXISTING	174	1191	114	205	658	135		61	1535	204	109	1752	40
AMBIENT													
RELATED							Ī						
PROJECT					<u> </u>								
							_					1	
TOTAL	174	1191	114	205	658	135		61	1535	204	109	1752	40
LANE	4 ₁	个 命 句 2	;	, v	个	<u>}</u>	4	1 🖟	↑ ♠ ↑ 1 1		f 分	个 命 句 1 1	;
	Phasir	ng F	RTOR	Phasii	ng	RTOR		Phasir	ng l	RTOR	Phasir	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto		Perm	1	Auto	Pern	1	Auto


N/S:	Wilbur A	ve W/E:	Vio	tory BI	I/S No:	19
AM/P	M: PM	Comments: Cumulativ	e Plus Project			
COU	NT DATE:	STUDY DATE	i:	GROWTH F	ACTOR:	

Volume	e/Lane/Sig	nal Confi	guration	ıs ====									
	NO	RTHBOUN	ND.	SOUTHBOUND			ι	WE	STBOU	ND	E/	STBOU	ND
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	149	810	95	109	545	103		66	1486	219	136	1767	76
AMBIENT													
RELATED													
PROJECT													
TOTAL	149	810	95	109	545	103		66	1486	219	136	1767	76
LANE	f 分 4	↑ ♠ ♠ 1 1	↑ 4 _†	f 分	↑ ♠ ↑ 1 1			h 於 ' 1	↑ ♠ ↑ 1 1	<u></u>	f 分 1	个	
	Phasin	g R	TOR	Phasir	ng l	RTOR		Phasir	ıg l	RTOR	Phasii	ng	RTOR
SIGNAL	Perm		Auto	Pern	1	Auto		Perm	1	Auto	Pern	1	Auto

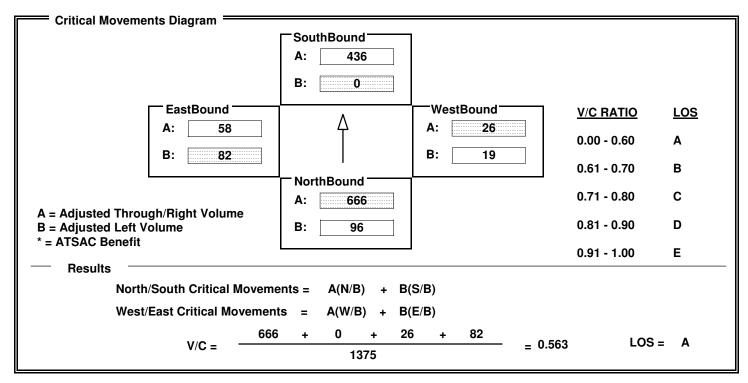
N/S:	Reseda BI	W/E:	Victory BI	I/S No:	20
AM/PM: PM	Comments:	Cumulative Plus	s Project		
COUNT DATE	i:	STUDY DATE:	GROW	/TH FACTOR:	

Volume	/I ano/Si	gnal Conf	iguration	. = =									
Volume	-/ Lanc/Si	gilai Colli	iguratioi	13									
	NO	RTHBOU	ND	SO	UTHBOU	ND		W	STBOU	ND	E/	ASTBOU	ND
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	124	1135	118	94	854	174	1	03	1465	165	143	1655	115
AMBIENT													
RELATED													
PROJECT													
TOTAL	104	4405	440	04	054	174		00	1465	105	140	1055	445
TOTAL	124	1135	118	94	854	174		03	1465	165	143	1655	115
LANE	♠ ♣	个 命 句 1 1 1	; r> 4 _T >	h 分 1	个 命 仓 1 1		փ 1		↑ ∰ ↑ 2	\$	∮ ∱	수 슈 숙 2	
	Phasii	ng i	RTOR	Phasii	ng	RTOR	P	hasir	ng l	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	ix	Auto	Prot-F	ix	Auto	Р	rot-F	ix	Auto	Prot-F	Fix	Auto
													<u>.</u>

N/S:	De Soto Ave	W/E:	El Rancho Dr	I/S No: 21
AM/PM:	PM Comments	: Cumulative Plus	Project	
COUNT	DATE:	STUDY DATE:	GROWT	H FACTOR:

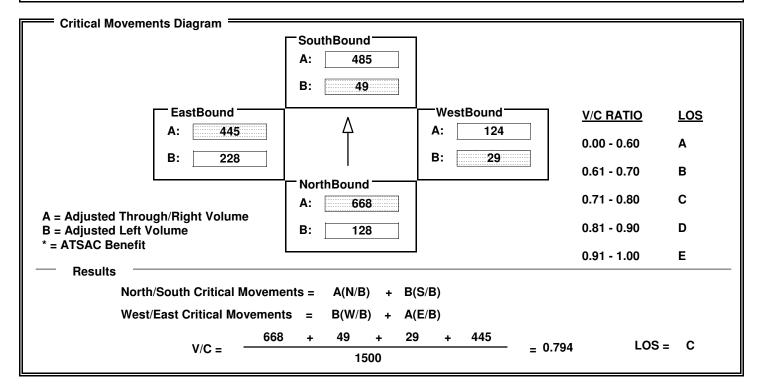
Volume	/Lane/Si	gnal Conf	iguration	s								
	NO	RTHBOU	VD.	SO	SOUTHBOUND			WESTBOUND			ASTBOUN	ID.
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	7	2024	202	13	1380	1	34	0	5	2	0	6
AMBIENT												
RELATED												
PROJECT												
TOTAL	7	2024	202	13	1380	1	34	0	5	2	0	6
LANE	4	☆ ☆ ☆ ☆ 2	_ t> 4±>		수 _仲 允 2 1	<u></u>	փ ∯ 1	个	ф № ф 1	f 分 1	个 _命 仓	
	Phasir	ng F	RTOR	Phasii	ng l	RTOR	Phas	sing	RTOR	Phasir	ng	RTOR
SIGNAL	Pern	1 /	Auto	Pern	n	Auto	Per	m	Auto	Pern	1 <	none>

Critical Movements Diagram				
onder movemente Blagram	SouthBound A: 460 B: 13			
EastBound	Λ	WestBound	V/C RATIO	<u>LOS</u>
A: 6 B: 2		A: 5 B: 34	0.00 - 0.60	A
<u> </u>		<u> </u>	0.61 - 0.70	В
A Adimand Thurson (Display Volume	NorthBound A: 742		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 7		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = $A(N/B) + B($	S/B)		
West/East Critical Movemen	ts = B(W/B) + A(E/B)		
V/C =	! + 13 + 3 ⁴	+ 6 = 0.530	LOS =	Α
V/G =	1500	≘ 0.330		-

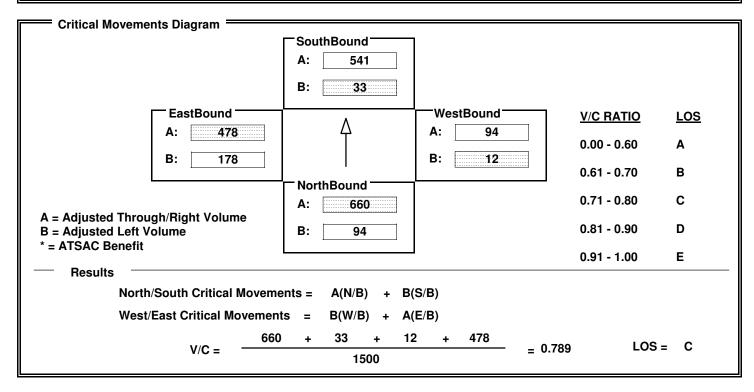

N/S:	De Soto Ave	W/E:	Erwin St	I/S No:	22
AM/PM: PM	Comments:	Cumulative Plus	Project		
COUNT DAT	E:	STUDY DATE:	GROW	TH FACTOR:	

Volume	/Lane/Si	gnal Confi	guration	ıs ====								
	NO	RTHBOUN	ND	SO	SOUTHBOUND			WESTBOUND			STBOU	ND
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	143	1866	43	44	1157	215	17	16	23	213	23	283
AMBIENT												
RELATED												
PROJECT												
TOTAL	143	1866	43	44	1157	215	17	16	23	213	23	283
LANE	4 A	↑ ♠ ♠ 2 1	↑ 4p	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	수 ☆ ☆ 2 1	<u></u>	ी क्रिं 1	1	♣ ♣ ♣	f 分	↑ ♠ ↑ 1	1
	Phasii	ng F	TOR	Phasii	ng l	RTOR	Pha	sing	RTOR	Phasir	ng	RTOR
SIGNAL	Pern	n A	Auto	Pern	n	Auto	Sp	olit	Auto	Split	1	Auto
11												

Critical Movements Diagram				
	SouthBound A: 457 B: 44			
EastBound —	Λ	WestBound	V/C RATIO	<u>LOS</u>
A: 173 B: 173		A: 23 B: 17	0.00 - 0.60	A
B. 173		J. 17	0.61 - 0.70	В
	NorthBound A: 636		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 143		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = $A(N/B)$ + $B($	S/B)		
West/East Critical Movemen	ts = $A(W/B)$ + $A($	E/B)		
V/C =	+ 44 + 23	3 + 173 = 0.615	LOS =	В
V/C =	1425	= 0.010	, –	


N/S:		Winnetka A	ve	W/E:	Brahma	Dr/Calvert St	I/S No:	23		
AM/PM: PM Comments: Cumulative Plus Project										
COUN	NT DATE:		STU	JDY DATE:		GROWTI	H FACTOR:			

Volume	e/Lane/Si	gnal Conf	iguratior	ns ——									
	NO	RTHBOU	ND	SO	SOUTHBOUND			WESTBOUND			EASTBOUND		
	LT	TH	RT	LT	TH	RT		LT	TH	RT	LT	TH	RT
EXISTING	96	1332	0	11	872	97		19	4	22	149	0	106
AMBIENT													
RELATED													
PROJECT													
TOTAL	96	1332	0	11	872	97		19	4	22	149	0	106
LANE	փ ∰ 1	↑ ♠ ♠ 2	L⊅ (H⊅		个	<u>}</u>	փ 1	₽ III	个	\$ p ₩ 1	4 分 2	↑ ∰ ·	Ŷ 1
	Phasii	ng F	RTOR	Phasi	ng	RTOR	ı	Phasii	ng	RTOR	Phasii	ng	RTOR
SIGNAL	Prot-F	ix <r< td=""><td>none></td><td>Pern</td><td>n</td><td>OLA</td><td></td><td>Spli</td><td>t</td><td>Auto</td><td>Spli</td><td>t</td><td>Auto</td></r<>	none>	Pern	n	OLA		Spli	t	Auto	Spli	t	Auto


N/S:	De Soto Ave	W/E:	Oxnard St	I/S No:	24				
AM/PM: PM Comments: Cumulative Plus Project									
COUNT DATE:	ST	UDY DATE:	GROWTI	H FACTOR:					

Volume	/Lane/Si	gnal Conf	iguration	ıs ====								
	NO	RTHBOU	ND	SO	SOUTHBOUND			WESTBOUND			STBOUN	ID .
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	128	1827	177	49	1269	185	29	223	25	228	445	242
AMBIENT												
RELATED												
PROJECT												
TOTAL	128	1827	177	49	1269	185	29	223	25	228	445	242
LANE	∮ ∰ 1 1	☆ ☆ ☆ 2 1		f 分	个		(h (r) 1	个	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	竹 分 '	个 _命 仓 1	1
	Phasii	ng F	RTOR	Phasi	ng I	RTOR	Phasi	ing	RTOR	Phasir	ng	RTOR
SIGNAL	Pern	n .	Auto	Pern	n	Auto	Peri	m	Auto	Perm	1	Auto

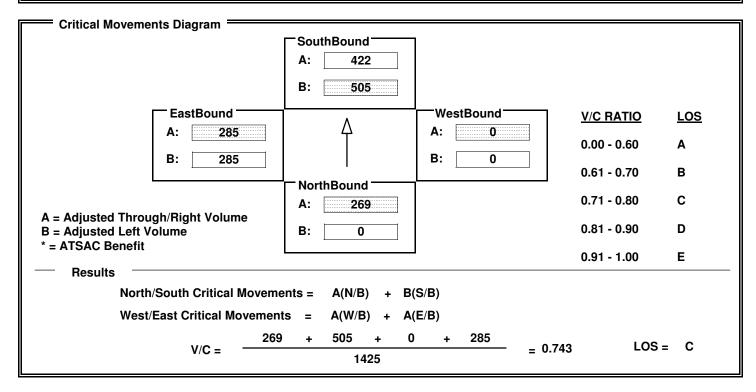
N/S:	Winnetka Ave	W/E:	Oxnard St	I/S No:	25
AM/PM: PN	Comments	: Cumulative Plus	Project		
COUNT DAT	TE:	STUDY DATE:	GROW	TH FACTOR:	

Volume	e/Lane/Sig	gnal Confi	guration	ıs 									
	NO	RTHBOU	ND	SOUTHBOUND			W	WESTBOUND			FASTBOUND		
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	
EXISTING	94	1256	63	33	972	109	12	63	19	178	478	59	
AMBIENT													
RELATED													
PROJECT													
TOTAL	94	1256	63	33	972	109	12	63	19	178	478	59	
LANE	∮ ∯	↑ ♠ ♠ 1 1	lb (db)	f 分	个		\$ P	↑ ∰ ́	\$ P \$P\$	fy 分 '	↑ ♠ ↑ 1	<u>}</u>	
	Phasir	ng F	TOR	Phasii	ng	RTOR	Phasi	ing	RTOR	Phasir	ng	RTOR	
SIGNAL	Pern	n /	Auto	Pern	n	Auto	Peri	m	Auto	Perm	1	Auto	

N/S:	De Soto Ave	W/E:	Burbank Bl	I/S No:	26					
AM/PM: PM Comments: Cumulative Plus Project										
COUNT DATI	≣: sı	TUDY DATE:	GF	ROWTH FACTOR:						

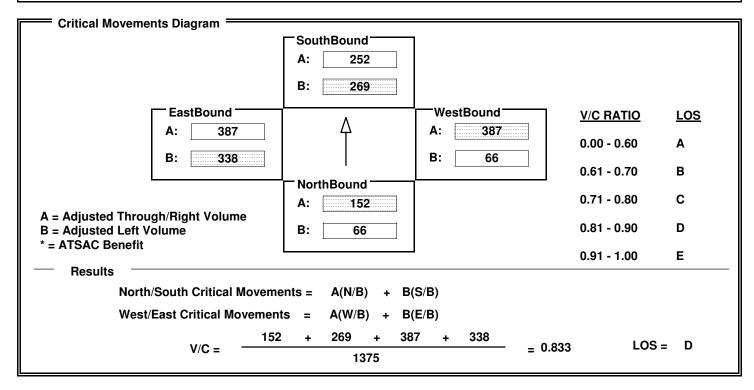
		e/Signal Configurations NORTHBOUND			SOUTHBOUND			ESTBOU	IND -	EASTBOUND		
EXISTING	LT 88	тн 1422	RT O	LT 0	тн 1840	RT 169	LT O	тн 0	RT 0	LT 650	тн 0	RT 535
AMBIENT	00	1422	U		1040	109	0	0		030	0	333
RELATED												
PROJECT												
TOTAL	88	1422	0	0	1840	169	0	0	0	650	0	535
LANE		↑ ♠ ♠ 3	ΓÞ 4πÞ	, N	수 슈 숙 2 1		4 £	↑ ∰ ⁴	ή η η Π	1 2 2	^ ^	<u>`</u>
SIGNAL	Phasir Perm		TOR one>	Phasii Pern		RTOR Auto	Phasi	ng	RTOR	Phasin Split		RTOR Auto

Critical Movements Diagram				
, and the second	SouthBound A: 670 B: 0			
EastBound —	<u> </u>	WestBound	V/C RATIO	<u>LOS</u>
A: 294 B: 358		A: 0 B: 0	0.00 - 0.60	Α
	Nowb Down d	<u> </u>	0.61 - 0.70	В
A Adjusted Through/Dight Volume	NorthBound A: 474		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 88		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = $B(N/B) + A($	(S/B)		
West/East Critical Movemen	ts = A(W/B) + B((E/B)		
V/C = 88	+ 670 + 0 1500	+ 358 = 0.744	LOS =	С


N/S:	De Soto Ave	W/E:	101 WB Ramps	I/S No:	27					
AM/PM: PM Comments: Cumulative Plus Project										
COUNT	ΓDATE:	STUDY DATE:	GROWT	TH FACTOR:						

Volume	/Lane/Si	gnal Confi	iguratior	ıs ====								
	NO	RTHBOU	ND	SO	SOUTHBOUND			WESTBOUND			ASTBOU	ND
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	248	1105	0	0	1526	636	283	0	529	0	0	0
AMBIENT												
RELATED												
PROJECT												
TOTAL	248	1105	0	0	1526	636	283	0	529	0	0	0
LANE	4 A	↑ ♠ ♠ 2	LÞ (HÞ	, v	个 命 仓 4	<u>1</u>	h 分 1	个 _余 ′	Ŷ (†)	ф	个 	
	Phasii	ng F	RTOR	Phasi	ng	RTOR	Phasir	ng	RTOR	Phasi	ng	RTOR
SIGNAL	Prot-F	Fix		Pern	1 <	none>	Split	t _	Auto			

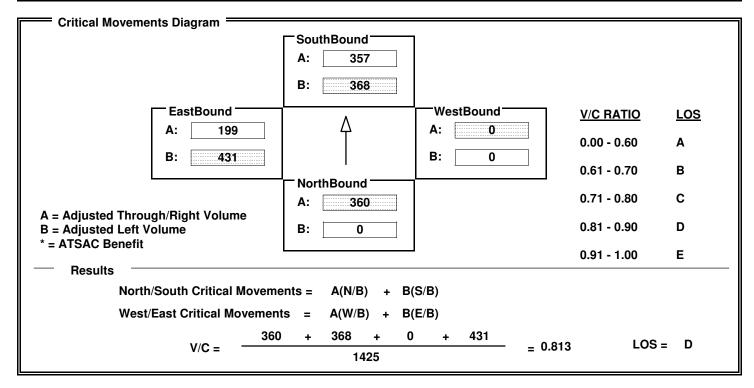
Critical Movements Diagram				
	SouthBound A: 636 B: 0			
EastBound —	1 ^	WestBound	V/C RATIO	LOS
A: 0		A: 271 B: 271	0.00 - 0.60	Α
j	<u> </u>		0.61 - 0.70	В
A A II	NorthBound A: 553		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 248		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results			0.91 - 1.00	
North/South Critical Moveme	ents = $B(N/B) + A($	(S/B)		
West/East Critical Movemen	ts = A(W/B) + A(W/B)	(E/B)		
V/C = 248	3 + 636 + 27	1 + 0 = 0.811	LOS =	D
V/0 -	1425	_ 0.011		


N/S:	AM/PM: PM Comments: C		101 EB Ramps	I/S No:	28			
AM/PM: PM	Comments	: Cumulative Plu	s Project					
COUNT DAT	E:	STUDY DATE:	GROWT	GROWTH FACTOR:				

	NO	RTHBOU	ND	SO	UTHBOL	IND	W	STBOU	ND	EA	STBOU	ND
EXISTING	LT 0	тн 808	RT 253	LT 919	тн 844	RT 0	LT 0	тн 0	RT 0	LT 567	тн 3	RT 237
AMBIENT												
RELATED		 			1							
PROJECT												
TOTAL	0	808	253	919	844	0	0	0	0	567	3	237
LANE		分	1 I	, v	수 🚓 4 2	<u>}</u>	ф ф	个 _命 4	τ̂ ι Φ	ή ή 4 1 1		<u>†</u>
	Phasir	ng I	RTOR	Phasii	ng	RTOR	Phasir	ng	RTOR	Phasin	g	RTOR
SIGNAL	Perm	1	Auto	Prot-F	ix <	:none>				Split		Auto

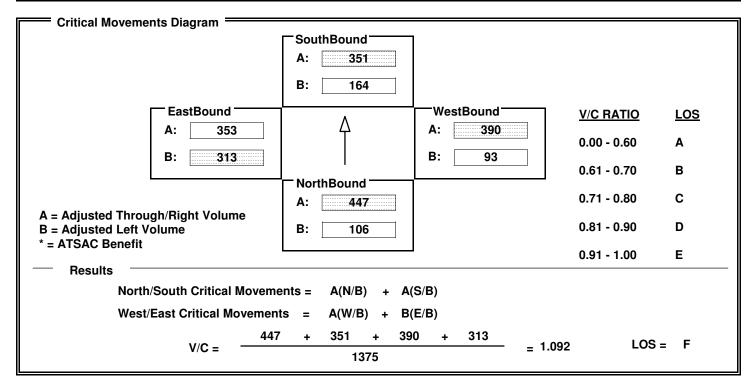
N/S:	/PM: PM Comments:	W/E:	Ventura BI	I/S No:	29
AM/PI	M: PM Comments:	Cumulative Pl	us Project		
COU	M/PM: PM Comments:	TUDY DATE:	GROW	/TH FACTOR:	

	_	ons ====								
NORT	HBOUND	SC	UTHBOU	ND	W	ESTBOUN	ND	EA	STBOUN	D
LT	TH RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
66	215 88	489	252	362	66	1162	465	338	1084	76
66	215 88	489	252	362	66	1162	465	338	1084	76
i 命令 i 1 1		p	个	\(\frac{1}{1}\)	f 分	↑ ♠ ↑ 3	1	, N	N / /	, I
Phasing	RTOR	Phasi	ng	RTOR	Phasi	ng l	RTOR	Phasir	ng l	RTOR
Split	Auto	Spli	t	OLA	Pern	n	OLA	Prot-F	ix	Auto
1	66 66 7 1 1 1 1 1 1 1 1 1	66 215 88 66 215 88 66 215 88 1 1 1 1	TH RT LT 66 215 88 489	TH RT LT TH 489 252	TH RT RT RT RT RT RT RT	LT TH RT LT TH RT G6 215 88 489 252 362 66	LT TH RT LT TH RT G6 215 88 489 252 362 66 1162	LT	LT	LT


N/S: Winnetka /	Ave W/E:	101 WB Ramps	I/S No:	30
AM/PM: PM	Comments: Cumulative Plu	s Project		
COUNT DATE:	STUDY DATE:	GROW	TH FACTOR:	

	NORTHBOUND LT TH RT 207 830 0		■ S0	OUTHBOUN	D •	WEST	TBOUND	<u> </u>	EASTBOUND					
EXISTING	LT 207			тн 836	RT 298	118	TH RT 13 552	LT 0	TH 0	RT 0				
AMBIENT RELATED														
PROJECT														
LANE	207 ∮ ♠ ↑ 1 2	4 4	0	836 	298 } \ \ \ \ \ \ \ \ \ \ \ \ \	318 介 수	13 552	0 ♪ ᠳ ☆	0	0 } \(\frac{1}{4} \)				
	Phasing	ı RTO	OR Phas	D'	TOR	Phasing	RTOR	Phasi	na	RTOR				

Critical Movements Diagram				
Ontious movements stagium	SouthBound A: 418 B: 0			
EastBound —	Λ	WestBound	V/C RATIO	<u>LOS</u>
A: 0		A: 294 B: 294	0.00 - 0.60	A
	<u></u> '	201	0.61 - 0.70	В
A Adimand Thurson Pinta Values	NorthBound A: 415		0.71 - 0.80	С
A = Adjusted Through/Right Volume B = Adjusted Left Volume	B: 207		0.81 - 0.90	D
* = ATSAC Benefit			0.91 - 1.00	E
Results				
North/South Critical Moveme	ents = $B(N/B) + A($	(S/B)		
West/East Critical Movemen	ts = A(W/B) + A(W/B)	(E/B)		
207	' + 418 + 29		LOS =	В
V/C =	1425	= 0.645	200 -	5


N/S:	Winnetka	Ave W/E:	101	EB Ramps	I/S No:	31
AM/P	M: PM	Comments: Cumulativ	e Plus Project			
COU	NT DATE:	STUDY DATE	i:	GROWTH F	ACTOR:	

	NO	RTHBOU	ND	SO	UTHBOL	IND	WE	STBOU	ND	EA	STBOU	ND
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	0	720	279	368	713	0	0	0	0	431	0	199
AMBIENT												
RELATED												
PROJECT												
TOTAL	0	720	279	368	713	0	0	0	0	431	0	199
LANE	4 £	↑ ☆ 兌 1 1		N N	↑ ∰ [∠] 2	<u>}</u>	ф ф		<u></u>	1 1		
	Phasin	g F	RTOR	Phasir	ng	RTOR	Phasir	ng	RTOR	Phasin	g	RTOR
SIGNAL	Perm	1	Auto	Prot-F	ix <	:none>				Split		Auto

N/S: [Winnetka	Ave W/E:	Ve	ntura BI	I/S No:	32
AM/PI	M: PM	Comments: Cumulativ	e Plus Project			
COU	NT DATE:	STUDY DATE	::	GROWTH F	ACTOR:	

Volume	e/Lane/Sig	nal Confi	nuration	. —								
Volume	- Larie Jig	ııaı oomi	juration	3								
	NOF	RTHBOUN	D	SO	UTHBOL	IND		WESTBOL	IND	EA	STBOUN	ID
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT
EXISTING	106	401	46	299	351	218	93	779	315	313	950	109
AMBIENT												
RELATED												
PROJECT												
TOTAL	100	404								0.10	0.50	100
TOTAL	106	401	46	299	351	218	93	779	315	313	950	109
LANE	4 A 4	\$\frac{1}{4}\$\frac{1}{4}\$	lþ (44)	փ ជា 2	个 命 行 1	<u>}</u>	ή _δ ί	2	ή β ήν 1	f 分 ·	↑ ☆ ↑ 2 1	, t _p _d t _p
	Phasin	g R	TOR	Phasii	ng	RTOR	Pha	sing	RTOR	Phasir	ng	RTOR
SIGNAL	Split	Α	uto	Spli	i	OLA	Pe	erm	OLA	Prot-F	ix	Auto

APPENDIX D

PIERCE COLLEGE PARKING UTILIZATION SUVEY DATA BY PARKING LOT AND TIME OF DAY

			CURR/LOT/		0.	ANA 1	0.4	MA.	10	AM 1	11 11 1		DIM		TIME O		28.4	0.0	28.4	41	- NA		28.4		DN4 1	70	28.4
REA	NUMBER	TYPE	CURB/LOT/ ETC.	Inventory		AM		M		AM	11AM		PM		PM		M		PM		PM		PM		PM	7P	
					Occ	%Occ	Occ	%Occ	Occ	%Occ	Occ %Oc	Occ	%Occ	Occ	%Occ	Occ	%Осс	Осс	%Occ	Occ	%Occ	Occ	%Осс	Occ	%Occ	Occ	%C
		Student	Lot	681	94		149		210		218	221		196		169		90		52		69		122		127	
8 9 10 11 12 13		Faculty	Lot	14	5		5		6		10	10		7		5		4		5		1		2		2	
	8	H/C	Lot	11	1		1		1		1	1		2		3		1		1		1		1		1	
		Bus	Lot	13	0		0		0		0	0		0		0		0		0		0		0		0	
	9 10 11 12 13 TOTAL A	Student	Lot	150	1		2		4		1			1		2		0		1		1		2		2	
		H/C	Lot	6	0		0		0		0	0		0		0		0		0		0		0		0	
8 - 9 - 10 - 11 - 12 - 13 - 13 - 7 - 2 - 14 - 14 - 14	Bus	Lot	3	0		0		0		0	0		0		0		0		0		0		0		0		
	Student	90 Degree Street	41	10		10		10		10	10		11		12		5		6		10		10		10		
	H/C	90 Degree Street	7	0		0		0		0	0		2		1		1		1		0		0		0		
	Student	Curb	18	10		17		20		24	27		12		9		7		14		16		6		8	Ī	
	11 12 13	General	Curb	112	12		16		25		21	24		19		11		8		5		10		18		23	
	13	Student	Curb	27	11		10		9		9	8		9		7		5		6		10		12		13	
	TOTA	AL AREA A		1,083																							
		Student	Lot	1,127	816		901		993		,109	1,115		811		677		657		659		680		724		930	
		Faculty	Lot	151	57		71		84		92	87		74		69		57		49		43		45		45	
		Faculty Carpool	Lot	8	0		0		0		0	0		0		0		1		1		1		1		0	
	7	20-minute Faculty	Lot	4	3		4		4		4	4		2		2		2		1		4		1		0	
		H/C	Lot	31	10		11		11		18	13		9		7		9		9		10		11		14	
	7 20 1 Te	Temporary H/C	Lot	14	6		6		7		6	6		5		3		4		4		0		2		4	Ī
		Child Development	Lot	14	11		9		9		5	5		5		5		3		6		8		5		0	
	14	Parking Faculty	Curb	12	7		1		11		11	11		12		12		11		9		10		10		11	Ī
		Faculty	Curb	23	11		13		17		19	19		17		19		19		19		19		19		17	Γ

1

PIERCE COLLEGE PARKING UTILIZATION

4/29/2009

																TIME O	F DAY											
AREA	NUMBER	TYPE	CURB/LOT/ ETC.	Inventory	8AM		9AM		10	AM	11A	M	12	PM	1 F	PM	2F	PM	3F	PM	4F	PM	5F	5PM		6PM		PM
					Occ	%Осс	Occ	%Occ	Occ	%Осс	Occ	%Осс	Occ	%Осс	Occ	%Occ	Occ	%Осс	Occ	%Occ	Occ	%Осс	Occ	%Осс	Occ	%Осс	Occ	%Осс
	10	H/C	Curb	1	0		0		0	1			1		0		0		0		0		0		1		1	
	16	Faculty	Small Lot	2	2		2		2		2	2			2		1		1		1		2		2		2	
		Faculty	Small Lot	4	2		4		4		4		4		4		4		3		3		3		4		4	
	17	H/C	Small Lot	2	1		1		1		2		2		2		1		1		1	1			1		1	
В		Faculty	Small Lot	45	39		46		46	, 4		45			35		31		30		27		25		23		21	
		30-Minute	Lot	1	0		0		0	1					0	0 0			0		0		0		0		0	
	18	Non-Marked	Lot	7	7		7		7		7		7		5		5		3		1		1		1		2	
		Grass Spaces	Lot	6	0		3		3		5		5		4		4		3		1		1		1		0	
		H/C	Lot	6	0		1		1		1		3		5		5		3		0		0		1		1	
	19	Faculty (south of Building 8340 (Pace Honors))	Lot	6	4		7		7		4		4		2		2		4		4		3		3		4	
		Faculty	South of South Gym	3	3		3		3		3		3		4		4		3		2		2		2		3	
	20	Unmarked	South of South Gym	5	4		4		4		5		5		5		5		5		5		5		5		2	
		H/C	South of South Gym	1	0		1		1		1		1		0		0		0		0		0		0		0	
	21	Faculty	Lot	33	9		11		11		15		15		17		21		19		16		17		20		24	
		H/C	Lot	1	1		1		0		0		0		1		1		1		0		0		0		1	
	22	Faculty	Curb	6	6		6		5		5		6		6		6		7		7		6		5		9	
		H/C	Curb	2	1		1		2		2		2		1		1		0		0		0		0		0	
	23	General	Curb	114	86		105		111		106		101		87		79		83		86		99		111		104	
	TOTA	T.	1,629																									
	4	Student	Lot	411	127		149		252		258		264		235		180		133		104		95		98		125	
	5	Faculty	Lot	68	17		23		28		30		33		26		23		19		17		13		5		7	

PIERCE COLLEGE PARKING UTILIZATION

4/29/2009

				I												TIME OI	F DAY												
AREA	NUMBER	TYPE	CURB/LOT/ ETC.	Inventory	8,	AM	94	9AM		10AM		11AM		12PM		1PM 2F		PM	3F	PM 41		PM		5PM		6PM		PM	
					Occ	%Осс	Occ	%Осс	Occ	%Осс	Occ	%Осс	Occ	%Осс	Occ	%Осс	Occ	%Осс	Осс	%Осс	Occ	%Осс	Occ	%Occ	Occ	%Осс	Occ	%Осс	
	24	Student	Curb/Lot	79	31		33		37		39		27		24		13		6		5		12		18		26		
С	25	Student	Dirt Lot	187	43		58		115		126		133		138		123		79		69		110		116		127		
		Faculty	Dirt Lot	21	0		2		7		9		10		11		10		9		6		7		11		8		
		H/C	Dirt Lot	7	0		0		0		1		3		4		3		1		2		2		2		2		
	26	Student	Curb	20	8		15		17		21		25		18		20		9		7		6		4		8		
	TOTA	AL AREA C		793																									
		Student	Lot	272	241		270		272		272		272		265		264		269		266		261		260		272		
	1A	30-minute	Lot	26	7		10		15		21		25		17		13		19		16		15		15		20		
		H/C	Lot	8	4		6		6		7		7		6		6		7		6		7		4		4		
		Motorcycle	Lot	16	0		3		3		3		3		4		4		4		2		2		2		4		
		Reserved Sheriff	Lot	8	2		2		3		3		3		4		4		4		5		4		4		2		
		Reserved Pierce College Van	Lot	6	0		0		0		0		0		4		4		4		3		3		3		3		
		Faculty	Lot	170	84		107		115		131		134		139		145		139		113		89		77		56		
	1B	Faculty Carpool	Lot	6	0		1		2		2		2		3		3		3		3		2		2		2		
		H/C	Lot	6	0		1		2		2		2		1		1		0		0		1		2		1		
D		Student	Lot	33	17		23		23		28		30		33		33		30		29		21		14		26		
		Faculty	Lot	5	0		1		1		1		1		1		1		2		3		1		0		2		
	2	H/C	Lot	2	0		0		0		0		0		0		0		0		0		0		0		0		
		Dirt	Lot	20	4		9		9		14		16		16		18		18		15		11		4		11		
	3	Student	Lot	45	31		45		45		45		45		41		38		33		21		20		17		39		
	27	General	Lot	15	6		6		7		7		7		5		5		4		2		2		2		2		
		H/C	Lot	1	0		0		0		0		0		0		0		0		0		0		0		0		

PIERCE COLLEGE PARKING UTILIZATION

4/29/2009

	NUMBER	TYPE	CURB/LOT/ ETC.	Inventory	TIME OF DAY																							
AREA					8AM		9AM		10AM		11AM		12PM		1PM		2PM		3PM		4PM		5PM		6PM		7F	PM
					Occ	%Осс	Occ	%Occ	Occ	%Occ	Occ	%Осс	Occ	%Осс	Occ	%Осс	Осс	%Occ	Occ	%Осс	Occ	%Occ	Осс	%Осс	Occ	%Осс	Occ	%Occ
	28	General	Curb	21	27		32		43		43		31		39		41		43		45		45		45		39	
	29	Faculty	Curb	4	2		2		2		3		3		3		3		3		3		3		2		1	
		H/C	Curb	3	1		1		1		1		1		1		1		1		1		1		0		0	
TOTAL AREA D																												
TOTAL 4,1																												

4